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Abstract
This large-scale study, consisting of 21.3 million hand-hygiene opportunities from
19 distinct facilities in 10 different states, uses linear predictive models to expose
factors that may affect hand-hygiene compliance. We examine the use of features
such as temperature, relative humidity, influenza severity, day/night shift, federal hol-
idays, and the presence of new medical residents in predicting daily hand-hygiene
compliance; the investigation is undertaken using both a “global” model to glean gen-
eral trends and facility-specific models to elicit facility-specific insights. The results
suggest that colder temperatures and federal holidays have an adverse effect on hand-
hygiene compliance rates, and that individual cultures and attitudes regarding hand
hygiene exist among facilities.

Keywords Hand hygiene · Predictive analytics · Linear regression ·
Marginal effects modeling · Feature ranking

1 Introduction

Healthcare-associated infections represent a major cause of morbidity and mortality
in the USA and other countries [1]. Although many can be treated, these infections
add greatly to healthcare costs [2]. Furthermore, the emergence of multidrug-resistant
bacteria have greatly complicated treatment of healthcare-associated infections
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[3], making the prevention of these infections even more important. One of the
most effective interventions for preventing healthcare-associated infections is hand
hygiene [4]. Yet, despite international programs aimed at increasing hand hygiene
[4–6], rates remain low, less than 50% in most cases [4, 6, 7].

Because of the importance of hand hygiene in preventing healthcare-associated
infections, infection control programs are encouraged to monitor rates to encour-
age process improvement [6, 8, 9]. In most cases, hand-hygiene monitoring is done
exclusively by human observers, which are still considered the gold standard for
monitoring [7]. Yet, human observations are subject to a number of limitations. For
example, human observers incur high costs and there are difficulties in standardizing
the elicited observations. Also, the timing and location of observers can greatly affect
the diversity and the quantity of observations [10, 11]. Furthermore, the distance of
observers to healthcare workers under observation and the relative busyness of clin-
ical units can adversely affect the accuracy of human observers [11]. The presence
of human observers may artificially increase hand-hygiene rates temporarily just as
the presence of other healthcare workers can induce peer effects to increase rates [12,
13]. Finally, the number of human observations possible is quite small in comparison
to the number of opportunities [7, 12].

As a consequence, several automated approaches to monitoring have been pro-
posed [8, 14–16]. Many of these measure hand hygiene upon entering and leaving
a patient’s room. The subsequent activation of a nearby hand-hygiene dispenser
is recorded as a hand-hygiene opportunity fulfilled whereas, if no such activation
is observed, the opportunity is not satisfied. Such approaches, while not capturing
all five moments of hand hygiene, do provide an easy and convenient measure of
hand-hygiene compliance. With automated approaches becoming more common, a
more ongoing and comprehensive picture of hand-hygiene adherence should emerge,
providing new insights into why healthcare workers abstain from practicing hand
hygiene.

In this work (an extension of [17]), we provide an in-depth exploration of factors
affecting hand-hygiene compliance across multiple hospital facilities using linear
predictive models.

2 Data andMethods

2.1 Hand-Hygiene Event Data

Our hand-hygiene event data is a proprietary dataset provided by Gojo Industries.
The data were obtained from a number of installations consisting of door counter
sensors1, which increment a counter anytime an individual goes in or out of a room,
and hand-hygiene sensors, which increment a counter when soap or alcohol rub are
dispensed. Additional supporting technology was also installed to collect and record
timestamped sensor-reported counts. We provide a simple illustration of how these

1Practically speaking, these sensors can be fit to any sort of patient entrance/exit area, as depicted in Fig. 2.
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technologies are used in Fig. 1 and a picture of an instrumented room entrance in
Fig. 2. In this paper, we will use the term dispenser event to designate triggering
and use of an instrumented hand-hygiene dispenser and door event to designate the
triggering of a counter sensor located on one of the instrumented doors.

A total of 19 facilities in 10 states were outfitted with sensors; because of privacy
concerns, we report only the state and CDC Division for each. The facilities comprise
a wide range of geographies, spanning both coasts, the midwest and the south. A total
of 1851 door sensors and 639 dispenser sensors reported a total of 24,525,806 door
events and 6,140,067 dispenser events across these 19 facilities between October
21, 2013, and July 7, 2014. Each facility contributed an average of 172.3 reporting
days, making this study the largest investigation of hand-hygiene compliance to date
(i.e., larger than the 13.1 million opportunities reported in [18]). Assuming each door
event corresponds to a hand-hygiene opportunity, we estimate an average facility
compliance rate of 25.03%, in line with if not just below the reported low-end rate
found in [19].

The original data, consisting of timestamped counts reported from individual sen-
sors over short intervals, were re-factored to support our analysis. First, data from
each sensor were binned by timestamp, t , into 12-h intervals, corresponding to tradi-
tional day and night shifts, as indicated by an additional variable, night , defined as
follows:

nightshif t =
{

1 t ε [7pm, 7am)

0 t ε [7am, 7pm)

Second, door and dispenser counts were aggregated based on day and night shift
so as to produce a series of shift-level records. For each such record, we compute
hand-hygiene compliance, or just compliance, by dividing the number of reported
dispensed events by the number of door events:

compliance = # dispenser

# door

(a)

(b) (c)

Fig. 1 A simple illustration of the sensors and corresponding infrastructure. a Healthcare workers enter
and exit patient rooms that are fitted with sensors, interacting with instrumented dispensers as they do;
note that the sensor on the hand-hygiene dispenser is internal, and not visible. b These door and dispenser
counts are intermittently sent to a wireless transmitter. c These counts are relayed via transmitter and stored
in a database, along with other information, such as the room the counts came from and the time and date
in which they were sent
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Fig. 2 A nurse applying hand-hygiene rub upon leaving an instrumented patient area. Note the door sensor
highlighted by the red box

Such a definition of compliance assumes that each door event corresponds to a single
hand-hygiene opportunity and each dispenser event corresponds to a single hand-
hygiene event whereas, in reality, a healthcare worker might well be expected to
perform hand hygiene more than once per entry, resulting in rates that exceed one, if
only slightly. This estimator also ignores the placement of doors with respect to dis-
pensers: multiple dispensers may well be associated with a single doorway, and some
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dispensers may be in rooms having multiple doors. Thus, simply adding new dis-
pensers will raise apparent compliance rates computed in this fashion, while adding
new door sensors will appear to reduce compliance. Even so, when applied consis-
tently and if system layouts are fixed, this estimator is a reasonable approximation of
true hand-hygiene compliance and supports sound comparisons within a facility (but
not across facilities).

Because malfunctioning sensors or dead batteries can produce outliers (i.e., very
low or very high values), shifts with fewer than 10 door or dispenser events reported
per day (possibly indicating an installation undergoing maintenance), zero compli-
ance, or compliance values greater than 1 were removed prior to analysis (at the cost
of possibly excluding some legal records). The remaining data consist of 5308 shifts
from the original 5647 records, having hand-hygiene opportunities and

hand-hygiene events (see Table 1).

2.2 Feature Definitions

In this subsection, we define the features (factors) that will be examined, and how
each is derived.

Table 1 Descriptive statistics for all reporting facilities in terms of state, CDC division, hand-hygiene
events, people events, and reporting days

Facility State CDC Div Tot disp Tot door Days rep

91 OH ENC 234,292 518,772 252

101 OH ENC 3,50,901 2,021,665 260

105 TX WSC 238,899 1,940,024 260

119 MN WNC 123,877 242,939 156

123 TX WSC 325,618 1,112,198 243

127 NM Mnt 1,306,855 4,546,171 260

135 OH ENC 125,731 264,331 258

144 CA Pac 398,961 1,744,642 260

145 CA Pac 567,096 2,073,566 260

147 CA Pac 500,979 2,462,900 260

149 CA Pac 590,708 2,306,392 260

153 CT New E 169,564 603,482 208

155 NY M-At 171,275 619,507 117

156 NC S-At 4381 38,200 15

157 OH ENC 39,455 313,396 101

163 OH ENC 344 10,233 5

168 PA M-At 30,421 86,909 20

170 IL ENC 112,604 353,631 47

173 OH ENC 4788 15,122 32

Total 10 8 3274
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2.2.1 Local Weather Data

Because healthcare workers frequently cite skin dryness and irritation as a factor
in decreased compliance (particularly in cold weather months where environmental
humidity is reduced), we associate daily air temperature (denoted temp) and rela-
tive humidity (denoted humid) to each timestamped record based on each facility’s
reported zip code. Spatially assimilated weather values (σ = 0.995) for the entire
globe were obtained from the National Oceanic and Atmospheric Administration
(NOAA) [20]. Given in terms of grid elements (a tessilation of bounding boxes cov-
ering 2.5◦ latitude by 2.5◦ longitude), the world is thus defined as a 144 by 73 grid
having 10512 distinct grid elements. Weather data are available at a fine level of tem-
poral granularity (on the order of 4 times daily for each grid unit) for the entire period
of interest. The geographical assignment of weather data was obtained by first map-
ping each facility’s numerical zipcode to the zipcode’s centroid (2010 US Census
data), and then subsequently mapping zipcode centroid (lat,lon) to the corresponding
NOAA grid element. An example of this assignment can be observed in Fig. 3. We
associate weather information from the observation temporally closest to the start of
each shift.

2.2.2 Influenza Severity

We conjecture that the local severity of common seasonal infectious diseases such
as influenza may also affect hand-hygiene compliance rates. We define influenza
severity (denoted f lu) as the number of influenza-related deaths relative to all deaths
over a specified time interval.

Influenza severity data were obtained from the CDC’s Morbidity and Mortality
Weekly Report (MMWR), which also reports data at weekly temporal granularity.
Rather than reporting data by CDC region, however, data are provided by reporting
city (one of 122 participating cities, mostly large metropolitan areas). We map each

Fig. 3 Assigning ( box)
NOAA weather data, reported in
terms of a geographic grid, to
healthcare facilities ( dots),
where the color gradient
might represent temperature
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facility in our dataset to the closest reporting city in order to associate the appropriate
severity value to each record. In other words,

repCity = arg min{dist(facility, cityi ) : i = 1, . . . , 122}

where dist(fac, city) �
∥∥(faclat , faclon), (citylat , citylon)

∥∥
2, the Euclidean distance

between two entities given in terms of (lat, lon) coordinates. Eight of 19 facilities
were located in a reporting city (i.e., dist(fac,city)= 0). The remaining 11 facilities
were mapped to a reporting city that was, on average, 66.2 miles away (only 3 of 19
facilities were mapped to a reporting city further than this average, with the largest
distance being 142 miles).

2.2.3 Temporal Factors

We also conjecture that external factors associated with specific holidays or events
may affect hand-hygiene compliance rates. Holidays may change staffing rates or
affect healthcare worker behaviors. The number of visitors (affecting door counter
rates) may also be greater than during regular weekdays. Holidays such as the 4th of
July are often associated with alcohol-related accidents and may increase healthcare
facility workloads (similar factors may also apply on weekends).

We define a new variable holiday that reflects whether a given shift occurs on one
of the 10 federal holidays (New Year’s Eve, Martin Luther King Day, President’s Day,
Memorial Day, the 4th of July, Labor Day, Columbus Day, Veteran’s Day, Thanks-
giving or Christmas) where, if any part of the shift (day/night) falls on the holiday in
question, the indicator is set to 1. More formally:

holiday =
{

0 t /∈ {holidays}
1 t ∈ {holidays}

Similarly, in order to ascertain the impact of weekends on compliance, we define a
new variable weekday as follows:

weekday =
{

0 t ∈ {Sat, Sun}
1 t ∈ {Mon, T ues, Weds, T hurs, F ri}

Note here that if a shift spans the weekday into a weekend (or vice versa), it is
encoded as a weekend.

A related concept is the presence of new resident physicians, who traditionally
start work the first of July. We define a new variable that corresponds with this time
period in order to see if the data reveal the presence of a July effect (denoted July):

July =
{

0 t /∈ July1−7
1 t ∈ July1−7
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2.3 Exploring Factors Affecting Hand Hygiene

2.3.1 M5 Ridge Regression for Feature Examination

With covariates defined and associated with the collected sensor data, we wish to
build a linear hypothesis h that (a) accurately estimates hand hygiene and (b) reports
the direction and degree of effect of our defined features.

In accomplishing (b), we bear in mind two things:

(1) There may be multi-collinearity among features, which may adversely affect
the output.

(2) That (a) and (b) may be at odds with one another; i.e., obtaining good predic-
tions may entail discarding some prediction-inhibiting features for which we
would like to obtain effect estimates (in practice, we find that this is not actually
the case).

Therefore, we propose an M5 Ridge Regression for Feature Examination method
designed to accomplish (a) and (b), while bearing (1) and (2) in mind. This method
is given by

h∗ = arg min
h∈Hl

‖�(X)h − y‖2
2 + λ ‖h‖2

2

s.t. ρ(hj ) ≤ .05 ∀ j
(1)

where X ∈ R
n×p is a design matrix, h is the hypothesis, y is the target vector con-

sisting of compliance rates in which a particular yi ∈ [0, 1], λ is a regularization
term, ‖·‖2 is the �2-norm, and ρ(·) is a function that reports the p value of a hypoth-
esis term (this constraint is ensured via sequential backwards elimination [21]). The
function �(X) can be defined as

�(X) � arg min{t ∈ THl
} (2)

where t is hypothesis selected from a tree of hypotheses constructed using the M5
method [22]. Effectively, (2) only reduces the p dimension, acting as a feature
selection method and having no bearing on the n dimension.

There are a few benefits of the above method worth noting. First, the hypothe-
sis class Hl is linear and common to both (1) and (2). Such two-stage optimization
approaches, where the first objective is optimized taking into account the hypothe-
sis class before the hypothesis itself is optimized for predictive accuracy (or some
other such measure), have been shown to work well in other contexts [23]. Secondly,
such a method is specifically geared toward producing a hypothesis that makes use of
features that have an immediate bearing upon the problem, while eliminating inter-
pretability obscuring effects, such as multi-collinearity. Moreover, these desirables
are obtained while attempting to produce the most accurate hypothesis: an h that
elicits feature indicativeness, produces accurate results, and controls for confounding
effects is the goal of this two-step optimization procedure.

Ultimately, we conduct our analysis by observing the sign and magnitude of
the values in the hypothesis vector in order to determine the factors that influence
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hand-hygiene compliance, and whether such factors affect compliance in a posi-
tive or negative manner. We also observe correlation and RMSE values to determine
how well our predictive model works, and whether the corresponding results can be
trusted. All results are obtained via k-fold cross-validation (k = 10).

2.3.2 Supporting Methodology

We also use two established/standard techniques—RReliefF feature ranking and
marginal effects modeling—that will serve as a point of comparison between our
method and also help inform the discussion of the results obtained.2

Feature Ranking First, we propose the use of the RReliefF algorithm [26], a modi-
fication of the original Relief algorithm of Kira and Rendell [27]. RReliefF finds a
feature j ’s weight by randomly selecting a seed instance xi from design matrix X and
then using that instance’s k nearest neighbors to update the attribute. This description
consists of three terms: the probability of observing a different rate of hand-hygiene
compliance than that of the current value given that of the nearest neighbors, given by

A = p(rate �= ratexi
|kNN(xi)), (3)

the probability of observing the current attribute value given the nearest neighbors,
given by

B = p(xi,j |kNN(xi)), (4)

and the probability of observing a different hand-hygiene rate than the current value
given a different feature value v and the nearest neighbors, given by

C = p(rate �= ratexi
|kNN(xi) ∧ j = v). (5)

Attribute distance weighting is used in order to place greater emphasis on instances
that are closer to the seed instance when updating each term; final weights are
obtained by applying Bayes’ rule to the three terms maintained for each attribute,
which can be expressed as

C ∗ B

A
− (1 − C) ∗ B

1 − A
. (6)

By using this method, we could then rank attributes in terms of their importance. We
again report rankings using k-fold (k = 10) cross-validation.

Marginal Effects Modeling To provide additional insight into the features that are
relevant to hand hygiene, we analyzed their marginal effects [28]. Marginal effects,
also referred to as instantaneous rates of change, are computed by first training a
hypothesis h, then, using the testing data, the effect of each covariate can be estimated

2Note that both the LASSO [24] and Elastic Net [25] would have also made appropriate supporting
methods.
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by holding all others constant and observing the predictions. Such a method can be
expressed by

ˆratei,j = h
[xi,j , x̄ �=j ] (7)

where, with a slight abuse of notation, xi,j , the value of instance i’s j th feature, is
added to the vector x̄ �=j , which consists of the average of each non-j feature, at the
appropriate location (namely, the j th position). Here, the notation �= j is used to
reinforce the fact that the vector of averages x̄ has it’s j th element replaced by xi,j .
Other non-j entries are given by x̄k = μ(Xk), for an arbitrary index position k.

3 Results

3.1 Global Model

In this section, we examine the results obtained by cross-validating global models,
where all facility records are used, and a facility-identifying feature is included3.

3.1.1 Predictive Power: M5 Ridge Regression

We learned a hypothesis using all available features, including a nominalized facility
identifier. Our predictive results can be observed in Table 2. We note that the RMSE
is not large and the correlation is moderate, implying relatively good predictive
performance.

3.1.2 Examining Hypothesis h∗

We next examine the terms of the learned hypothesis h∗ (see Table 3). The model
includes unique identifiers for all 19 facilities, 12 of which had positive correspond-
ing values, indicating relatively higher rates of compliance. The remaining facilities’
h∗ terms had relatively small negative values, indicating lower rates of compli-
ance. Among other features, holidays are associated with lower compliance rates
and influenza severity with higher compliance. Weekdays are associated with higher
compliance rates, as are higher temperatures and humidity. Interestingly, the M5
Ridge Regression model appears to have eliminated some holidays (Martin Luther
King day, Memorial day, Labor day, Columbus day, and Thanksgiving), as well
as Facility 163 (the facility with the lowest amount of hand-hygiene data). This
means that these features do not contribute to hand-hygiene compliance rates in any
meaningful way.

3We calculated the VIF (variance inflation factor) values of our proposed features to determine whether
multi-collinearity exists in our data. We found that VIF values ¿ 5, indicating multi-collinearity, were
found only among binarized facility indicator variables, but not among any of our defined features. This
result is not unexpected as many co-occurring “0”s are to be expected among facility indicator variables.



Journal of Healthcare Informatics Research

Table 2 Correlation coefficient
and RMSE of cross-validated
model predictions

Measure Value

Correlation 0.3441

RMSE 0.1702

3.1.3 RReliefF

Using RReliefF, we can rank features in terms of their importance in order to support
and supplement the result obtained using M5 Ridge Regression. These results are
reported in Table 4, where rankings shown are averages for 10-fold cross-validation.
Note that here, f acility was represented as a single discretely valued feature in order
to determine the importance of facility as a whole (instead of treating each facility as
its own feature), as was holiday.

3.1.4 Marginal Effects

The results obtained from modeling the marginal effects can be observed in Fig. 4.
Figure 4a, b shows the marginal effects of two randomly selected facilities; one

identified as being associated with lower rates of compliance and one identified as
having higher rates of compliance (from Table 3). Note that, because these are binary
features (taking on values of either zero or one), the kernel density of the underlying
data is not readily visible (unlike the other figures, which show results for non-binary
features). As we can see, the marginal effects support the result obtained using both
M5 Ridge Regression and RReliefF and also seem to suggest an even greater associ-
ation between facilities and rates of compliance than was originally apparent (at least
for these two facilities).

Table 3 Feature specific hj

terms, where highlights
features with a negative
association and highlights
those with a positive association
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Table 4 RReliefF attribute
weights Attribute Avg val Avg rank

Facility 0.029(±.001) 1

Flu 0.007 2

Temp 0.005 3.3(±0.46)

Weekday 0.002 5

Humid .001 6.3(±0.64)

July ≈ 0.0 7.2(±0.4)

Holiday ≈ 0.0 7.8(±1.08)

Night ≈ 0.0 8.7(±0.46)

Figure 4c shows the marginal effects of influenza severity. The f lu result shows a
slightly positive relationship between the severity of flu, measured in terms of mor-
tality, and hand-hygiene compliance rates. This is further supported by the result
obtained from M5 Ridge Regression and the RReliefF ranking.

Figure 4d, e shows the marginal effects of humidity and temperature. The result
obtained for both is consistent with that from M5 Ridge Regression. The lesser
effect of humidity and greater effect of temperature are also reflected in the RReliefF
ranking.

3.1.5 Weather and Temperature: Statistical Significance

To further explore the relationship between hand hygiene and weather effects, we
conducted a simple statistical analysis. For each facility, we selected the temperature
and humidity values corresponding to the bottom 10% and top 10% of hand-hygiene
compliance rates. We then performed a paired t test on each set of samples; tem-
perature and humidity values were scaled to [0, 1]. The results of this analysis are
reported in Table 5.

Table 5 shows that most facilities have statistically significant differences between
the two samples and that μtop 10 > μbottom 10. Such results indicate that higher tem-
peratures and levels of humidity (particularly temperature) are statistically associated
with higher rates of hand hygiene. However, we find that some facilities co-located
in the same geographic region have conflicting statistical results (e.g., Facs. 91,
173). We conjecture that such a result may be attributable to differences in sensor
deployment location, but we leave such an investigation as future work.

3.2 Facility-Specific Modeling

The full M5 Ridge Regression models’ reliance on facility identities, coupled with
the RReliefF feature ranking result, suggests that compliance depends, at least in part,
upon facility-specific healthcare worker attitudes, administrative culture, or even
simply the disposition of sensors and the architecture of the facility. Therefore, we
propose to construct and analyze facility-specific models in the same manner as our
global model.
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Fig. 4 a–e The marginal effects of several select covariates, where shows the kernel density of the
original data and the show the estimation. Rate (y-axis) vs. feature (x-axis). Note that in a and b,
no kernel density estimate is provided, as these plots are for binary features
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Table 5 The difference in means and paired t test p value results, obtained by comparing tempera-
ture/humidity values among the bottom 10% and top 10% of hand-hygiene compliance rates, by facility
( indicates that either temperature, humidity, or both have a positive difference in means
and a p value ≤ .05)

Therefore, in this section, we present a comprehensive set of facility-specific
results obtained using facility-specific models: we explore 10 of the 19 facilities
disclosed in Table 1, which comprehensively represent a large geographic disper-
sion (which may produce geographic-specific similarities and differences in the
obtained results), which will further illustrate the facility (and location)-specific
factors affecting hand-hygiene compliance.

3.2.1 Predictive Power: M5 Ridge Regression

The facility-specific M5 Ridge Regression modeling results are reported in Table 6.
Comparing Table 2, showing the performance of the global model, with Table 6,

we can see that there is uniformly lower RMSE among the facility-specific models
(Table 6) as compared to that of the global model. This result is not unexpected. On
the other hand, we observe a range of correlation values, some of which are better
than the global model (the first eight facilities in Table 6), and some of which that are
worse. We note that the last two facilities, which had worse correlation results than
the global model, are also the facilities that have comparably little data.
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Table 6 Facility-specific M5
Ridge Regression
cross-validation results

Fac # Correlation RMSE

155 0.5907 0.0658

153 0.2089 0.0991

149 0.1168 .0489

123 0.6193 0.11

127 0.7133 .0313

91 0.5384 0.0939

101 0.3751 0.0442

170 0.0645 0.0607

168 0.362 0.0794

We now turn to examining the terms of each facility-specific hypothesis vector,
which can be observed in Table 7. Note that, for the sake of simplicity in analyzing
these features, we have created a single, binary holiday feature (as opposed to having
a feature for each holiday, as in our global model).

In examining Table 7, we wish to first point out that, relative to the global model
result reported in Table 3, that all facility-specific models had at least one term that
was removed via sequential backwards elimination. Moreover, these eliminated terms
differ by facility, demonstrating that local models are sensitive to different features
in different ways.

In examining the hypothesis terms, some interesting findings emerge. With respect
to our weather-based features—temperature and humidity—we can see that, for the
most part, these factors were positively associated with higher rates of hand-hygiene
compliance and, for certain facilities (147, 155, 123), these features appear to be
fairly important (based on the magnitude of the coefficients). Two facilities, however,
have a negative association with temperature and compliance. These coefficients,

Table 7 Hypothesis vector terms for each facility-specific model

Facility # Temp Humid Weekday Flu Holiday Night July

147 0.4237 0.0594 NA −0.937 NA −0.0176 NA

155 0.2721 NA 0.0491 0.1847 NA −0.178 NA

153 NA 0.048 0.0168 −0.0638 NA −0.0514 −0.0779

149 NA NA 0.0184 −0.0543 NA 0.0093 NA

123 0.419 NA −0.0572 −0.2392 NA 0.0787 NA

127 0.0672 NA 0.0315 0.0383 −0.0232 −0.0499 NA

91 −0.0546 0.1329 0.0683 NA −0.1207 −0.1012 NA

101 −0.0437 0.0219 0.0219 NA −0.0234 −0.0169 −0.0617

170 NA NA NA −0.1518 NA NA NA

168 NA 0.1414 NA 0.207 NA −0.0742 −0.0729
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however, are relatively small and are offset by positive associations among humid-
ity: in other words, the effects of temperature on compliance rates at these facilities
appear to be somewhat negligible.

In examining weekday and holiday, we can see that in all but one facility,
weekday has a positive influence on hand-hygiene rates. This suggests that employ-
ees that work during weekends at these facilities may be washing their hands less; this
may be attributable to a number of factors (increased work load, etc.). The holiday

feature, on the other hand, tends to be indicative of lower rates of compliance among
the three facilities reporting a non-zero term in their hypothesis vector (i.e., facilities
91, 101, 127).

The night and July features also tend to be negatively associated with hand-
hygiene compliance, with JulyEff ect being universally associated with negative
rates of compliance (among the three facilities for which this term was not elimi-
nated). night , by contrast, had two facilities which were found to have a positive
term for this feature. These may be hospitals where there is relatively less activity
at night (less busy); however, further investigation is needed to tease out the reasons
individual facilities experience these differing rates.

Finally, f lu appears to have a mix of positive and negative associations among
facilities. In those facilities that have negative associations, a campaign focusing
on flu awareness may be beneficial; however, lower rates may be attributable to
increased activity during peak flu season, which may also suggest the need for higher
staffing levels—further investigation is needed to uncover the reasons behind these
associations.

3.2.2 RReliefF

In this subsection, we discuss the results of RReliefF feature ranking obtained for
each of the 10 facilities being investigated; the results are presented in Table 8.

The first observation we wish to make is that there is no single feature that com-
pletely dominates the feature rankings among the different facilities. This suggests

Table 8 Facility-specific RReliefF feature rankings

Fac # Temp Humid Weekday Flu Holiday Night July

147 2 5.7 3.8 1 5.2 4 6.3

155 1 2 4.8 4.8 5.2 3.2 7

153 2.2 5.8 4.5 1 4.7 3.1 6.7

149 4.3 5.1 1.2 2.1 6 6.6 2.7

123 1 4.1 5.4 3 4.3 7 3.2

127 2.8 3.5 6.5 4.4 1 3.3 6.5

91 3.9 3 5.5 2.1 1 5.5 7

101 3.1 7 5.3 4 3 4.6 1

170 1.9 4.4 3.9 1.2 4.3 6.9 5.4

168 1.5 3.8 2.9 1.5 6.3 6.6 1.8
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that facilities’ compliance rates are affected differently by our selected features.
However, we can also that some features are often ranked as being more important,
while others as less important. For instance, temp is frequently one of the top three
features, while July more often appears toward the bottom of the ranking. It is impor-
tant to note here, however, that while July, weekday, night , and holiday appear
toward the end of the feature ranking for some facilities, they appear toward the top
for others. The f lu feature also frequently appears in the top three feature rank-
ings among facilities, while humid often appears somewhere near the middle of the
rankings.

3.2.3 Marginal Effects

The facility-specific marginal effects modeling results are presented in Fig. 5. Note
that we are reporting only a subset of results, which include temp, humid, weekday,
and f lu.

Cumulatively, these results further support what we have already discussed, with a
few observational caveats. First, temperature is found to be universally indicative of
higher rates of compliance, which was found to not be entirely true for facilities 91
and 101; these coefficients are likely obscured by some degree of multi-collinearity
with other features—the same is true of humid. weekday and f lu, as in the other
results, are found to be mostly indicative of higher rates of compliance, with the
exception of a few facilities.

4 Discussion and FutureWork

In this section, we discuss the broader implications of our findings, as well as
directions for future work.

The global results, including the full M5 Ridge Regression model, marginal
effects models, and RReliefF feature ranking, provide several insights. First, we
found that facility identities are strongly related to compliance, suggesting that
facility-wide attitudes toward hand hygiene exist, persist in time, and are predictive of
compliance rates. On the other hand, this observation may also reflect differences in
sensor installation, where different facilities may have sensors instrumented in differ-
ent departments, thus affecting reported rates. Second, increases in influenza severity
were associated with an increase in compliance, which is encouraging because it
implies that healthcare workers are responding positively (i.e, more hand hygiene)
to an increased presence of infectious disease. This artifact also surfaced in our
facility-specific models, which also revealed that different facilities have different
magnitudes in the effect of flu severity on hand hygiene. Third, our conjecture regard-
ing lower weekend and holiday compliance appears to have some merit, although the
specific holidays associated with negative compliance were somewhat surprising. We
again acknowledge that this result may be affected by increased visitors during these
times, diluting the perceived compliance rate. Furthermore, our facility-specific mod-
eling showed that, for some hospitals, both weekday and holiday had a large bearing
on hand-hygiene compliance predictions (i.e., these factors were important predic-
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Fig. 5 Facility-specific marginal effects modeling results. The x-axis label for each sub-figure is the col-
umn heading (e.g., Temp) and the y-axis label for each sub-figure is Predicted Rate of Hand Hygiene
Compliance
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tors of compliance). Fourth, our conjectures that higher humidity and temperature are
indicative of higher rates of compliance were confirmed by the full model, marginal
effects model, and statistical analysis. This finding is important as healthcare workers
often cite skin irritation or dry skin as reasons for reduced frequency of hand hygiene.
These same factors were also strongly suggested by our facility-specific modeling.
Fifth, we found that compliance during the first week of residents’ attendance ran
contrary to our original conjecture: the July was essentially unobservable. However
we did find that select facilities (153, 101, and 168) had this as an influencing factor
(particularly 101 and 168). Finally, we found that night was associated with slightly
lower compliance rates. However, as our facility-specific modeling exposed, some
facilities (149, 123) appear to have slightly higher rates of compliance during the
evening; although, it is worth noting that, for these facilities, night was at the bottom
of the RRefliefF feature ranking (indicating relatively low importance).

Different facilities have different factors that affect compliance rates differently:
no two facilities are alike. While many of the facilities have factors that influence
compliance rates in similar ways—positive or negative (e.g., temperature)—they
differ in degree (how much these common factors influence compliance) and compo-
sition (the specific set of non-zero terms in the hypothesis vector h∗). Cumulatively,
we can see that factors affecting hand-hygiene compliance among facilities is a
complicated topic requiring further investigation.

This work has several limitations. First, there are differences among installa-
tions: not all doors and dispensers may be instrumented and, therefore, we cannot
track, for example, the use of personal alcohol dispensers (we can only assume sta-
ble practices within facilities). Thus, our compliance estimates may be based on
partial information and are certainly not comparable across facilities. Second, our
compliance estimates are facility wide, meaning that we do not exploit the co-
location of dispensers and door event sensors, but only the temporal correlation of
the individual events. Thus, our assumption that each door event corresponds to a
hand-hygiene opportunity may be fundamentally flawed, even as it allows for con-
sistent intra-facility comparisons. Third, we acknowledge the possibility of location
and sampling bias with regard to both the sensors and facilities. If sensors were to
be placed in only the ICU of one facility and in the emergency room of another,
we may observe different rates, which may be entirely reasonable and expected in
clinical practice. Additionally, though facilities are distributed across the USA, they
are by no means meant to be a representative sample of facility types or climatic
conditions.

In our future endeavors, we would first like to consider alternative definitions of
compliance and examine compliance at finer-grained temporal levels, perhaps explor-
ing time-series analyses. We intend to also explore framing the problem as one of
classification, rather than only regression, which may help tease out additional arti-
facts. Finally, data pertaining to compliance rates under certain interventions would
give way to exploration of intervention efficacy both in general and using prediction-
based methodology, such as inverse classification, to recommend facility-specific
intervention policies [29, 30].

Hand-hygiene compliance is a simple yet effective method of preventing the
transmission of disease, both among the population at large, and within healthcare



Journal of Healthcare Informatics Research

facilities, yet there have been few attempts to study the factors that can affect com-
pliance. This study presents a first look at factors that underlie healthcare worker
hand-hygiene compliance rates, including weather conditions, holidays and week-
ends, and infectious disease prevalence and severity, and serves as a model for future
studies that will exploit the availability of temporally and spatially rich compliance
data collected by the sophisticated sensor systems now being put into practice.
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