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Abstract

Objective: To estimate the burden of Clostridium difficile infections (CDIs) due to interfacility patient sharing at regional and hospital levels.

Design: Retrospective observational study.

Methods: We used data from the Healthcare Cost and Utilization Project California State Inpatient Database (2005–2011) to identify
26,878,498 admissions and 532,925 patient transfers. We constructed a weighted, directed network among the hospitals by defining an edge
between 2 hospitals to be the monthly average number of patients discharged from one hospital and admitted to another on the same day. We
then used a network autocorrelationmodel to study the effect of the patient sharing network on the monthly average number of CDI cases per
hospital, and we estimated the proportion of CDI cases attributable to the network.

Results: We found that 13% (95% confidence interval [CI], 7.6%–18%) of CDI cases were due to diffusion through the patient-sharing net-
work. The network autocorrelation parameter was estimated at 5.0 (95% CI, 3.0–6.9). An increase in the number of patients transferred into
and/or an increased CDI rate at the hospitals from which those patients originated led to an increase in the number of CDIs in the receiving
hospital.

Conclusions: Aminority but substantial burden of CDI infections are attributable to hospital transfers. A hospital’s infection control may thus
be nontrivially influenced by its neighboring hospitals. This work adds to the growing body of evidence that intervention strategies designed to
minimize HAIs should be done at the regional rather than local level.

(Received 27 August 2018; accepted 7 March 2019)

Clostridium difficile infections (CDIs) have increased dramatically
during the past several years; CDI is now one of the most common
hospital-acquired infections (HAIs).1,2 In addition to causing
increased morbidity and mortality,2–5 CDI is associated with
longer lengths of stay6,7 and increased healthcare costs.8–10

Historically, risk factors for CDI have been associated with the
individual. Risk factors have included exposure to specific antimi-
crobial agents,3,11–13 older age,14–17 increased levels of comorbid-
ity,8,18 longer lengths of stay,19,20 and exposure to agents that
decrease levels of gastric acid (ie, H2 blockers or proton pump
inhibitors).21–23 More recently, environmental risk factors have
also been reported, including patients exposed to hospital units
with more colonization pressure.24 Higher risks of CDI have also
been reported in rooms where a previous occupant had a CDI25,26

and in hospitals with higher CDI incidence.27 The increased
risk associated with environmental exposures could reflect a con-
taminated environment25–28 or exposure to increased levels of

antimicrobials beyond individual exposures.29 Recent work has
shown that hospital transfer rates have also been associated
with CDI.30

Hospital transfers have been associated with the spread of other
pathogens, including methicillin-resistant S. aureus (MRSA)31–33

and multidrug-resistant gram-negative organisms.34–37 Given the
public health threat inherent in the spread of multidrug-resistant
organisms (MDROs) and HAIs from hospital to hospital, interest
in targeting population or community-wide interventions to con-
trol these pathogens has increased.38 To help motivate and design
coordinated and population-based interventions to control the
spread of HAIs, a better understanding of the role of hospital trans-
fers is needed. Specifically, methodological approaches are needed
to estimate the disease burden at a regional level attributable to
hospital transfers as well as the effect of patient sharing on CDI
rates at the hospital level. The relationship between hospital trans-
fers and higher levels of HAIs is unclear, as is the public health sig-
nificance of this relationship. Thus, we have developed a statistical
network modeling framework for estimating both the transfer-
related burden of disease at a state level (as quantified by the pro-
portion of CDI infections attributable to transfers) and the burden
at a hospital level (as a function of both the number of transfers out
of a hospital and the CDI rate of the source of those transfers).
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Methods

Data

The study results were based on the State Inpatient Database (SID),
an administrative claims database available through the Healthcare
Utilization Project. The SID contains information from discharge
abstracts for all inpatient visits to a nonfederal hospital for specific
states and years. In this analysis, we used California data for the
period from January 2005 to November 2011. This dataset con-
sisted of 27,200,873 records from 408 hospitals. We excluded from
the analysis those hospitals that did not appear over the entirety of
the study period. Thus, we retained 385 hospitals, which accounted
for >98.8% of the patient records. We focused on California based
on its large size and because its geography minimizes transfers to
and from other states.

Critically, this dataset contained data regarding return visits,
which allowed us to track patients overmultiple visits. Thus, we were
able to discern transfers between hospitals by considering patients
who had common discharge and admission dates involving 2
distinct hospitals. We defined a patient transfer as a patient dis-
charged from one hospital (the source hospital, s) and then admitted
to another hospital (the target hospital, t) on the same day. We
defined a weighted network as a set of nodes and a set of pairs of
nodes, for which each pair has an assigned value. We constructed
such a weighted network in which the nodes are the 385 hospitals
and a weighted edge between hospital s and hospital t is set to be
equal to the monthly average number of transfers from s to t.

CDI cases were identified as inpatient visits with an International
Classification of Disease, Ninth Revision, Clinical Modification
(ICD-9-CM) diagnosis code of 008.45. Principal CDI diagnoseswere
excluded because these were unlikely to be related to HAIs.39 Both
the sensitivity and specificity of this code are high (78% and 99.7%
respectively).40 Our primary outcome of interest was the monthly
average number of CDI cases at each hospital. We also computed
the monthly average number of admissions, median length of stay,
median number of diagnoses (ie, the number of diagnosis codes
listed for the patient at the time of discharge) per inpatient, and
percent of inpatients aged 65 years and older.

Statistical analysis

Our goal was to determine the expected increase in monthly aver-
age number of CDI cases due to the patient transfer network acting
as a vector for disease diffusion. To account for the varying patient
populations associated with the 385 hospitals, we considered as
covariates the median length of stay, the median number of diag-
noses per inpatient visit, and the percent of patients aged over 65.
To account for potential community effects, we included tensor
product splines using the latitude/longitude coordinates of the hos-
pitals, and we used Akaike information criterion (AIC) to select the
number of knots. Additionally, we included the hospital’s monthly
average admission count as a covariate. If the expected number of
CDI cases was simply a proportion of a hospital’s total admissions,
this would be the only significant covariate. To answer our primary
research questions, we also incorporated the transfer network
contagion effect into the modeling framework defined to be the
change in the number of CDI cases due to patient transfers.

The intuition leading to our statistical modelling choice is as
follows: Assume that the probability of a patient transferring out
of a hospital being symptomatically or asymptomatically infected
or contaminated with Clostridium difficile is proportional to that
hospital’s CDI rate. The expected number of contagious patients

being transferred out of a source hospital and into a target hospital
is then proportional to the product of the total number of transfers
from the source to the target and the source’s CDI rate. We can
then investigate the effect on the target hospital’s CDI cases
from the total expected number of contagious transfer patients.
The model in terms of the ith hospital can be informally
conceptualized as

Avg # CDIð Þi¼ Avg # Admissionsð Þi þ Median LOSð Þi þ Median #Dxð Þi
þ % Over 65ð Þi þ

X

j 6¼i

#transfers from j to ið Þ � Avg CDI Rateð Þj:

Statistically valid inference can be achieved by implementing a
network autocorrelation model (NAM) and finding the corre-
sponding maximum likelihood estimators and their sampling dis-
tributions.41 The NAM estimates the effects of covariates as well as
the network on the mean of the response variable. This framework
appropriately accounts for the dependencies between the observa-
tions induced by the connectivity through patient sharing, thereby
yielding consistent estimators and correct standard errors (see the
Supplemental Material online).

By allowing us to estimate the network effect on the mean
monthly average number of CDI cases, the NAM also provided an
opportunity to evaluate a counterfactual framework. Specifically,
we computed the expected total number of monthly CDI cases
accounting for both the covariates and the network contagion effect.
We then estimated the expected total number of monthly CDI cases
as if we were capable of negating the network contagion effect while
keeping all else constant. We then considered the percent decrease in
expected total number of monthly CDI cases due to this negation.
In this way, we were able to assess the percent of CDI cases affected
by the patient sharing network (see the Supplementary Material
online for details of the counterfactual framework).

To ensure that the network term in the NAM was in fact esti-
mating a contagion effect rather than acting as a proxy for
in-degree (the number of other hospitals transferring patients to
a given hospital), which could itself be a proxy for any number
of confounding factors such as available services, we ran the model
with in-degree included as a covariate to verify and reassess the
statistical significance of the network term in the NAM. Because
this term remained significant we were confident that the network
term in the NAM had captured the desired contagion effect.
However, the interpretability of the model decreases with both
in-degree and the network term included in the model; thus, it
was more useful to exclude in-degree as a covariate as it was not
statistically significant.

Results

We identified 532,925 transfers over the 7-year period. Of all
147,840 possible directed pairs of the 385 hospitals, 14.4% shared
at least 1 patient. Of those directed pairs of hospitals that did
share patients, the mean (SD) of the monthly average number
of transfers was 0.302 (SD, 1.37; range, 0.0120–64.4).

Figure 1 shows the 385 hospitals included in the study, and a
line connects any pair of hospitals that transferred >1 patient
per year from one to the other over the observed time frame.
Patient sharing is apparently highly pervasive and not constrained
by geographic considerations. Table 1 provides the descriptive
statistics for the response variable and the covariates in our
NAM (see the Supplementary Material online for more detail).
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Table 2 provides the results from the NAM. Increasing the
monthly average total admissions by 100 led to an expected
increase in monthly average number of CDI cases by 0.59
(95% CI,0.54–0.63). This result reflects the overall proportion
of admissions with a secondary diagnosis of CDI (0.60%).
Increasing the median number of diagnoses per patient by 1 led
to an expected increase in monthly average number of CDI of
0.51 (95% CI, 0.40–0.68). After comparing 64 combinations
of latitude and longitude cubic tensor product splines ranging
from 3 to 10 marginal degrees of freedom each, the AIC chose
3 degrees of freedom for both. The estimated effect on the monthly
average number of CDIs due to the spatial effect is shown in
Figure 1. The likelihood ratio test, however, yielded a P value of
0.70, indicating that the spatial component was not statistically
significant.

The final 2 rows of Table 2 correspond to the patient transfers.
The network contagion effect was estimated to be 5.0 (95% CI,
3.0–6.9), indicating that an increase in the number of patients
transferred into and/or an increased CDI rate at the hospitals from
which those patients originated led to an increase in the number of
CDIs in the receiving hospital. This effect may be interpreted as
follows. A source hospital with a CDI rate of r will increase the
expected number of CDI cases in a target hospital by 5 for every
1/r patients transferred from source to target. For example, if a
source hospital has a CDI rate of 0.01, every hundred transfers
from this hospital to another will increase the expected number
of CDI cases in the target hospital by 5. Figure 2 illustrates this
effect by showing the expected increase in the number of CDI cases
due to patients transferring out of a source hospital as a function of
both the number of transfers out and the CDI rate of the source.
The white points provide the observed values for the 385 hospitals.
The final row of Table 2 corresponds to our counterfactual
framework. If the patient transfers were eliminated, our model pre-
dicts a 13% (95% CI, 7.6%–18%) decrease in the monthly number
of CDI cases.

Table 1. Descriptive Statistics for the Hospital-Level Variables in the Network
Autocorrelation Model (NAM) Corresponding to 385 Hospitals From 2005 to 2011

Variable Median IQR Minimum Maximum

Monthly avg. no. of CDI cases 3.65 6.94 0.00 52.3

Monthly avg. total admissions 601 1,070 3.27 4,560

Median LOS, d 3 1 1 42.5

Median no. of diagnoses 6 2 1 22

Patients aged >65 y, % 33.0 21.1 0.00 86.5

Note. IQR, interquartile range; CDI, Clostridium difficile infection; LOS, length of stay.

Table 2. Results from the Network Autocorrelation Model (NAM)

Variable Estimate 95% CI P Value

Intercept −4.44 (−6.44 to −2.44) <.001

Total admissions 0.00587 (0.00543–0.00631) <.001

Median LOS, d −0.0267 (−0.0952 to 0.0417) .444

Median no. of diagnoses 0.514 (0.350–0.679) <.001

Patients aged >65 y, % 0.0146 (0.00536–0.0345) .152

Geospatial effect : : : : : : .695

Network contagion effecta 4.99 (3.03–6.94) <.001

% attributable to patient
sharingb

12.6 (7.60–17.7) <.001

Note. CI, confidence interval; LOS, length of stay; CDI, Clostridium difficile infection.
aParameter determining the number of CDI cases exported by a source hospital based on the
source’s contamination level and the number of patients being transferred out of the source.
See text.
bQuantity from counterfactual framework describing the percent of all CDI cases attributable
to patient transfers. See text.

Fig. 2 Estimated increase in expected number of CDI cases exported by hospitals as a
function of source hospital’s CDI rate (vertical axis) and number of monthly transfers
(horizontal axis). The plot has been cropped to the convex hull of the observed values
to avoid extrapolation.

Fig. 1 California patient transfer network. White points are hospitals. Hospitals that
shared at least 1 patient per year during 2005–2011 are connected with a line.
Background colors describe the spatial variation in the expected number of CDI cases
per month.
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Discussion

We have demonstrated a statistical method of estimating both the
effect of patient transfers on disease rates and the proportion of
cases due to the network. Our results demonstrate that CDI rates
are associated with hospital transfers after controlling for hospital-
level factors and community effects. Across California, if the
contamination effect of hospital transfers were eliminated, by
our estimates we would anticipate a statewide decrease in CDI
of 13%, corresponding to a reduction in 247 expected statewide
number of cases each month. At a hospital level, we were able
to estimate the increase in the expected number of CDI cases
due to transfers as a function of the CDI rate of the source hospital
and the number of patient transfers.

In addition to our transfer-related results, we also found that
higher rates of CDI were associated with a greater number of
admissions. Hospitals with patients withmore comorbidities, mea-
sured by their number of diagnoses, also had higher rates of CDI.
All of these hospital-level risk factors confirm previous findings at
the individual level.8,14–18,27

Our method of estimating the burden of disease attributable to
hospital transfers used a statistical model and a counterfactual-like
approach. This approach was based on conditional expectations;
we compared the expected number of CDI cases given that there
is a network effect versus the expected number of CDI cases given
that the network effect is negated. Our results indicate that
hospital transfers had a significant effect on predicted CDI rates.
Specifically, we have demonstrated that if the effect of hospital
transfers were mitigated by some process of inducing immunity
(eg, by increased screening or vaccination),42 predicted CDI rates
would fall. Thus, our results allowed us to estimate, or at least place
an upper bound on, the burden of CDI attributable to patient
transfers. In prior work, controlling for a variety of hospital-level
risk factors, Simmering et al30 found that an increase of 1 in log
in-degree was associated with an increase of 4.8% in the CDI rate.
Our new results corroborate these prior findings while providing
(1) more confidence that our network term was not acting as a
proxy for some confounding factor, and (2) hospital-level burden
estimates.

Travel is an important driver of the spread of a broad range of
infectious diseases,43,44 including pathogens associated with spread
within healthcare facilities.43 Thus, it is not surprising that hospital
transfers, a specialized case of travel, have been implicated in the
spread of pathogens. Hospital transfers have been implicated in the
spread of rapidly emerging infections (eg, severe acute respiratory
syndrome [SARS]) and have been associated with the spread of
MRSA and MDROs in many different geographic regions.15,31,32,34–37

Transfers of patients demonstrate the interconnectedness of healthcare
systems. Accordingly, efforts to control the spread of infections at one
facility may benefit others and the less- rigorous-infection-control
efforts at some hospitals may impact the infection rates at other hos-
pitals within a transfer network. For example, a hospital’s attempt to
reduce the use of unnecessary antimicrobials may not have the
intended impact if a substantial proportion of admissions are transfers
from facilities with higher antimicrobial prescribing rates. Transfers
also have implications for the surveillance of healthcare-associated
infections.45–48

Despite the intuitive aspects of our results, their interpretation
requires some caution. Our statistical model gives an estimate of
the burden of hospital transfers on CDI, but it does not establish
causality. The transfer process that we are modeling may be

associated with CDI due to factors that were not considered by
ourmodel. For example, frailty and severity of illness are a risk factor
for CDI,8,18 and our models may not fully account for these factors.
Thus, the higher CDI rates associated with receiving transfers may,
to some extent, be a function of higher levels of frailty and higher
levels of comorbidities among patients being transferred from hos-
pitals with higher CDI rates. Alternatively, the hospital-transfer
structure and its association with risk may be measuring changes
in antimicrobial exposure in different hospital environments.
Indeed, patients transferred for medical reasons may not only have
greater severity of illness but may also be more likely to be exposed
to broad-spectrum antibiotics. Nevertheless, our statistical frame-
work can be thought of as an upper bound of the infections attrib-
utable to patient transfers. In our specific example, we would
expect a significant but overall modest reduction of CDI if we could
eliminate transfers altogether. Thus, our framework can be used to
estimate the likely impact of population- or community-based
interventions involving reducing risk of healthcare-associated
infections among transfer patients. Although we can use the same
framework with different hospital-associated infections, we would,
of course, expect the results to change from organism to organism
depending upon transmissibility.

Our study has several limitations. First, we used administrative
data to determine both outcome and predictor variables. We did
not have access tomicrobiologic testing data or the type of test used
to diagnose CDI within our dataset. Although there are other
sources of CDI infection data (eg, data reported directly to public
health agencies), they do not contain the appropriate transfer-
network data nor do they contain information on patients that
did not get CDI. Second, our data did not contain antibiotic
prescribing data at an individual level nor did we have antibiotic
prescribing data in aggregate at the receiving- or transfer-hospital
level. Antimicrobial prescribing at both individual and population
levels are known to be important drivers of CDI.3,11,12,29 Third, we
may be missing some CDI cases attributable to hospitals in cases in
which CDI presented after hospital discharge.49 Fourth, our data
do not provide information on transfers originating from another
state; hence, some patient transfers may have been missing. Fifth,
although we have tried to account for patient population character-
istics and community effects, other sources of CDI that could
impact our conclusions may not have been unaccounted for.
Sixth, we only used data from 1 state, and our results need to be
replicated in other states to improve their generalizability. Future
work with other states and including other variables is needed to
increase the generalizability and the reliability of our estimates.

Despite these limitations, we have clearly demonstrated that
hospital transfers are associated with higher CDI rates and that
reducing transfers may decrease the number of CDI cases at a pop-
ulation level. In addition, our methodological approach provides a
framework for estimating the burden of particular hospital-
acquired infections that are attributable to hospital transfers for
a wide range of pathogens. Thus, this modeling framework could
be useful in estimating the impact of transfer-focused infection
control interventions.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ice.2019.73.
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