A Case Study of a Sequential Double Auction of Capital

Timothy P. Hubbard
Department of Economics
Colby College
Timothy.Hubbard@Colby.edu

Harry J. Paarsch*
HPaarsch@Gmail.com

Will M. Wright
Wholesale Banking
National Australia Bank
Will.Wright@NAB.com.au

May 24, 2014

Abstract

For many immigrants, raising capital through conventional financial institutions (such as banks) is difficult, even impossible. In such circumstances, alternative institutions are often employed to facilitate borrowing and lending within the immigrant community. Using the theory of non-cooperative games under incomplete information, we analyze one such institution—the hu—is essentially a sequential, double auction among the participants in a cooperative. Within the symmetric independent private-values paradigm, we construct the Bayes–Nash equilibrium of a sequential, first-price, sealed-bid auction game, and then use this structure to interpret field data gathered from a sample of hu held in Melbourne, Australia during the early 2000s.

Keywords: auctions; institutions in economics development; inter-temporal smoothing.

JEL Classification: D44, C61, C41.

*Corresponding author: #3106-1823 Terry Avenue; Seattle, WA 98101.
1 Introduction and Motivation

Among Vietnamese immigrants, in countries such as Australia and New Zealand, there exists an healthy distrust of formal institutions, including banks. Moreover, even when this distrust can be overcome, many of these immigrants simply do not have long enough credit histories to qualify for conventional small-business loans. Yet one of the principal ways in which immigrants accumulate capital is by starting and growing small businesses, such as laundries and restaurants as well as neighbourhood markets and repair shops. What to do? Using experience gathered by their ancestors over generations in their home countries, these immigrants often employ alternative institutions that allow them to borrow and to lend among themselves within their communities.

One such institution is the hội which, as we shall argue later, is essentially a sequential double auction.¹ An hội allows a group of immigrants to pool scarce financial resources, and then to allocate these resources among potentially lucrative investments. In a typical hội, some \(N \) people form a cooperative; \(N \) can range from twenty to sixty. Each participant in the hội must deposit a sum \(u \) with the banker, typically a trusted elder in the community. In many of the hội for which we have data, \(u \) is between $200 and $500. On the final day that funds are collected, and in each month thereafter, until each participant has had his turn to win, a first-price, sealed-bid auction is held to determine the implicit interest rate paid; after the winner has been determined, only the winning bid is revealed. We refer to each auction in the hội as a round of the hội.

¹We believe that the word hội is pronounced like the \(h \) in hat along with the \(uoy \) in buoy, but we have been informed by reliable native speakers of Vietnamese that this is a coarse approximation at best. In any case, we pronounce hội as if it were the word hoi in English. The word hội is probably derived from Chinese, where the Guangyun romanization of this particular form is Piao-Hui, bidding hui, to be distinguished from the Lun-Hui, rotating hui, and Yao-Hui, dice-shaking hui. These institutions are examples of Rotating Savings and Credit Associations and are related to credit cooperatives which evolved later in such countries as Germany during the nineteenth century. Anderson [1966] has noted other English terms to describe this institution such as contribution club, slate, mutual lending society, pooling club, thrift group, and friendly society. We postpone our discussion of this until later in the paper.
In each round, a participant must choose a bid variable (denoted below by s) which is the discount below the deposited amount u he would be willing to accept from each remaining participant in that round. The participant in round t who has submitted the highest bid w_t wins that round of the hũi, and is excluded from participating in all subsequent rounds. In exchange for relinquishing his right to participate in future rounds, the winner receives a sum that is the product of the number of participants in the round and the discounted sum outstanding, plus the deposit from each of the previous winners as well as his initial contribution to the hũi from the banker: to wit, in round t, a winner receives the capital $[t \times u + (N - t) \times (u - w_t)]$.

Sound confusing? Perhaps the following example can clear things up. For simplicity, suppose that N is four, while u is 300, and that these four participants tender the following first-round bids: 12, 10, 8 and 6. In this event, the first bidder in the sequence (the one who bid 12) wins this round and he receives $1,164$: 288 from each of the other three participants in the round, plus 300 from the banker as there are no previous winners in the first round. The winner can now use this capital to finance some business venture.

In the second round of the hũi, held a month later, the remaining three participants must decide what discount each would be willing to offer. For simplicity, suppose none of the bids has changed, so 10, 8, and 6 remain the standing bids. In this event, the winner receives $1,180$: each of his remaining two opponents pays him 290, while the winner of the first round must pay him 300 and he, of course, gets 300 from the banker.

Consider now the third round of the hũi, held another month later with only two participants remaining. Again, suppose that the discounts are unchanged at 8 and 6. In this event, the winner is the first bidder who receives 292 from the other

2In the theory developed below in section 2, we demonstrate that bids should, in fact, vary over rounds of the hũi, but we abstract from that here.
Table 1: Net Cash Flow

<table>
<thead>
<tr>
<th>Bidder/Round</th>
<th>Banker</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banker</td>
<td>$1,200</td>
<td>−$300</td>
<td>−$300</td>
<td>−$300</td>
<td>−$300</td>
<td>$0</td>
</tr>
<tr>
<td>1</td>
<td>−$300</td>
<td>1,164</td>
<td>−$300</td>
<td>−$300</td>
<td>−$300</td>
<td>−36</td>
</tr>
<tr>
<td>2</td>
<td>−$300</td>
<td>−$288</td>
<td>1,180</td>
<td>−$300</td>
<td>−$300</td>
<td>−8</td>
</tr>
<tr>
<td>3</td>
<td>−$300</td>
<td>−$288</td>
<td>−$290</td>
<td>1,192</td>
<td>−$300</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>−$300</td>
<td>−$288</td>
<td>−$290</td>
<td>−$292</td>
<td>1,200</td>
<td>30</td>
</tr>
</tbody>
</table>

participant, plus $300 from each of the winners of the first and second rounds and, again, $300 from the banker—in short, a total of $1,192.

In the final round of the huī, held another month later, the sole remaining participant gets $1,200: $300 from each of the previous three winners for a total of $900, plus $300 from the banker. The last remaining participant has no incentive to tender a positive bid. What would be the point? He faces no competitors; the reserve prices in huī are zero.

In table 1, we present the payment streams for the banker as well as each of the four participants in the above example. As one can see from the net positions in the column headed by “Final” on the far right of table 1, some of the participants are net borrowers (for example, those with negative net cash positions), while other participants are net lenders (for example, those with positive net cash positions). It is in this sense that we argue that the huī is effectively a double auction: as an economic institution, the huī enables one side of the market to borrow from the other. Like many double auctions, the trades are executed sequentially over time. What is somewhat different in the huī is that offers to lend are only implicit. Those participants with less attractive investment opportunities do not quote offers to lend, but simply bid less than those who have better investment opportunities. In short, those participants with higher-valued rates-of-return win the early rounds of the huī, while those with lower-valued rates-of-return win later rounds. Under certain conditions, which we outline below, the huī guarantees an efficient allocation of the scarce capital
available to the cooperative.

The hủi obviously facilitates inter-temporal smoothing, and appears to be implementable under primitive market conditions, such as those present in developing countries. Presumably, the structure of the hủi accommodates an informational asymmetry that conventional banks cannot. Within immigrant communities, those of the same ethnic group typically have better information concerning what their fellow countrymen are doing than would the loan officer on Main Street. In addition, within these communities, the hủi is perhaps the only way in which some liquidity-constrained individuals are able to borrow small to medium amounts of capital. The average hủi has around forty members, each depositing as much as $500, so loans are on the order of $20,000 for three to four years. During our field work, we learned that those who default in an hủi are castigated within the community—cut-off from borrowing in the future. Thus, it is highly uncommon for participants in an hủi to default.

The hủi that we study is a special case of a class of institutions referred to in the literature as Rotating Savings and Credit Associations (ROSCAs); these institutions have been studied extensively, first by anthropologists and sociologists, and then by economists. Most prior analyses have focused on a variety we shall refer to as the household ROSCA; it has been argued that one reason this mechanism exists is to help people save for important, one-time, indivisible purchases, such as consumer durables. Another variety of ROSCA is one we refer to as the business ROSCA; we believe that this mechanism exists to help small-business owners obtain capital for investments, often when it is costly or impossible to do so through other means.

Perhaps the first in-depth study of a ROSCA was completed by Gamble [1944], who investigated what he referred to as a Chinese mutual savings society, one exam-

3 Elsewhere, Cope and Kurtz [1980] have investigated default in the context of an hủi-like mechanism conducted in Mexico. We discuss this mechanism in further detail below.
ple of which is exactly like the hui we have described above. In *Guangyun* Chinese, the hui we described above is referred to as *Piao-Hui*—bidding hui. Gamble, in fact, developed his anecdote involving Mr. Chang who lived in Hopei Province in China using the business bidding ROSCA (*Piao-Hui*) as a motivation. Later, Bascom [1952] described another type of ROSCA where no bidding occurs, which is referred to as the *esusu* in the Yoruba of Nigeria, Africa. Under this institution, the winner is determined by the president of the *esusu*, who selects the order of rotation. Thus, Bascom focused his attention on the household, pre-determined rotation-order ROSCA in Africa. Geertz [1962] studied ROSCAs, conducted in eastern Java, that follow a pre-determined rotation order; he reported that the institution is referred to there as *arisan*—literally “cooperative endeavor” or “mutual help.” In *Guangyun* Chinese, the *esusu* and the *arisan* would be referred to as *Lun-Hui*—rotating hui.

Ardener [1964] conducted an extensive study of ROSCAs in different regions of Africa, comparing and contrasting the different forms. The major remaining alternative way to determine the winner of any round is by lot drawn at random from the remaining participants. In *Guangyun* Chinese, this would be referred to as *Yao-Hui*—dice-shaking hui. In his study of Mexican-American immigrants in California, Kurtz [1973] has reported that this institution is referred to as the *cundina*, while Kurtz and Showman [1978] have reported that it is referred to as the *tanda* in Mexico, where the word means “alternative order.” Bouman [1995] has provided a glossary of other names used in various countries throughout the world.

Several researchers (including Ottenberg [1968], Penny [1968], Wu [1974], and Begashaw [1978]) have documented the importance of ROSCAs in societies with non-existent or limited formal financial institutions. In fact, Wu [1974] has attributed the financial success of the overseas Chinese in Papua New Guinea (prior to self-governance in 1973), in part, to the business bidding ROSCA (*Piao-Hui*) because
it allowed these immigrants to circumvent the discriminatory lending practices of Europeans at the time. For these reasons, and others, economists have also been interested in ROSCAs.

One of the first researchers to focus on the economic importance of ROSCAs was Callier [1990] who argued that the household ROSCA is Pareto improving because it allows consumers, on average, to get an indivisible consumer durable earlier than in the absence of the institution. Subsequently, Besley et al. [1993, 1994] have provided elegant and in-depth theoretical analyses of ROSCAs, focusing mostly on the randomly-rotating household variety, where they considered consumers who seek to make one-time purchases of indivisible durable goods, such as bicycles and the like. van den Brink and Chavas [1997] have also contributed to this literature with special reference to Africa. Banerjee et al. [1994] constructed a theoretical model and developed an empirical test of a related institution, the credit cooperative, which developed in Germany in the nineteenth century; Prinz [2002] has also contributed to this literature.

Besley and Levenson [1996] as well as Levenson and Besley [1996] have reported careful and detailed empirical analyses of household ROSCAs in Taiwan, investigating the importance of these informal credit institutions in helping people who have perceived limited credit worthiness to make large purchases of consumer durables. Calomiras and Rajaraman [1998] have focused on an alternative role of ROSCAs, at least in India: instead of an institution that just facilitates the purchase of large indivisible consumer goods, it is an institution that also provides insurance against unforeseen events, such as funerals. Alternatively, by focusing on household ROSCAs with random rotation, Anderson and Baland [2002] have emphasized the importance of the institution in Kenya, Africa to help women protect their savings from their husbands, some of whom have been known to spend surplus funds on cigarettes and
alcohol, instead of saving for their children’s educations, for example.

In this paper, we investigate business bidding ROSCAs, which we feel have been relatively neglected in the literature, perhaps because they are computationally somewhat tedious, particularly in environments containing private information. Kuo [1993] was the first to investigate bidding ROSCAs using modern game-theoretic methods. Subsequently, Kovsted and Lyk-Jensen [1999] couched the solution in terms of dynamic programming with a finite horizon. In the model of Kovsted and Lyk-Jensen [1999], however, the discount rate is a fixed constant that is different from the rate of return of a particular bidder. In many developing countries, no option to borrow at a fixed discount rate exists. Also, the bid functions derived by Kovsted and Lyk-Jensen [1999] are just a sequence of bids; in short, information revealed in earlier rounds is ignored. Thus, for example, in the second round, a participant’s optimal bid is not a number to be interpreted as his bid conditional on not winning in the first round. Instead, in the second round, a participant would want to condition his new bid on the observed winning bid of the first round. Thus, a second-round bid is a function of the winning bid of the first. In general, a bid is a function of the past history of winning bids as well as a bidder’s own rate-of-return. Kuo [2002] later extended his research to examine the effects of default.

Most recent research concerning bidding ROSCAs, particularly empirical research, has been undertaken by Stefan Klonner—specifically, that first reported in his doctoral dissertation, Klonner [2001], and then in Klonner [2002, 2003a,b, 2008] as well as Klonner and Rai [2005]. In the work of Klonner that is closest to ours, he examined outcomes at second-price auctions because that institution generated his data. In our work, we investigate first-price auctions, which are somewhat different, at least technically. As we develop our theoretical and empirical framework below, we shall compare and contrast the work of these researchers with ours.
In the remaining six sections of this paper, we present a summary of the following research: in section 2, we use the theory of non-cooperative games under incomplete information to construct a series of simple theoretical models of the hủi as a sequential first-price, sealed-bid auction within the symmetric independent private-values paradigm. In this section, we also investigate some properties of the equilibrium bid and optimal value functions and then use solved numerical examples to illustrate key properties of the Bayes–Nash equilibrium that we have constructed. We relegate to an appendix our theoretical investigation of hủi in which two types of economic agents bid—those we refer to as borrowers, and those we refer to as lenders. Subsequently, in section 3, we describe data collected for a sample of hủi held in a suburb of Melbourne, Australia during the early 2000s, while in section 4, we use the theoretical model of section 2 to develop an empirical specification. Specifically, in section 4, we demonstrate that our extension of the standard first-price, sealed-bid auction model, within a symmetric independent private-values environment, is non-parametrically identified, at least in the second-to-last round of the hủi. Unfortunately, during our field work, we were only able to gather a very small sample of twenty-two hủi, so non-parametric estimation is out of the question. Thus, in order to proceed, we are forced to make an important parametric assumption—that the rates-of-return are distributed according to a Beta random variables which has support on the interval $[0, \bar{r}]$. In section 5, we report empirical results obtained by confronting the structural econometric model of section 4 with the field data from section 3, while in section 6, we investigate two simple policy experiments—one involving a shift to a second-price, sealed-bid format and the other a shift to a lottery, which is how the dice-shaking version of the hủi is implemented in Mexico as well as many other parts of the world. Any details too cumbersome to be included in the text of the paper (for example, our analysis of a model that admits two types of participants in the hủi—borrowers
and lenders—as well as a proof that our model of a second-price, sealed-bid กำไร is non-parametrically unidentified) have been collected in the appendix at the end of the paper.

2 Theoretical Model

Before we develop our formal theoretical model, we devote some space to describing the environment within which we imagine economic actors making decisions. Consider a community in which many economic actors get investment opportunities. In this community, we take seriously the maintained assumption that there are no alternative ways in which to borrow or to lend, so our model has no constant rate of time preference. Implicit in the assumption of a constant rate of time preference is the fact that economic actors can borrow and lend at this rate. We imagine a world in which, if economic actors cannot get capital, then their potential investment opportunity produces nothing. In addition, there is no way to get a rate-of-return on savings. Thus, our framework is different from Kovsted and Lyk-Jensen [1999] as well as Klonner [2008] who assumed a constant discount rate.

Within this environment, bankers begin กำไร. The motivation of กำไร bankers is unclear as they do not appear to benefit financially from organizing กำไร, but they appear to bear some risk. For example, keeping large sums of cash at one’s home invites home invasion. Members of communities in which กำไร are used extensively claim that the กำไร bankers do it out of community spirit. We can neither confirm nor refute this claim. In fact, we remain silent on the motivation of กำไร bankers.

Typically, however, bankers have a target number of participants in an กำไร. The reasons bankers give for this target number can vary a bit, but the main reason appears to be that the number of participants in an กำไร determines the duration of the กำไร: bankers do not seem to want to manage กำไร whose durations are longer
than about five years, so fifty or sixty is usually the maximum number of participants chosen by bankers.

In our imagined environment, economic actors encounter investment opportunities that they would like to exploit, but for which they have insufficient capital to fund—e.g., the one-time purchase of an expensive machine whose seller is unwilling to extend credit. Based on the rate-of-return to his potential investment opportunity, an economic actor joins an hủi. When he joins the hủi, the number of other participants in the hủi as well as the terms of the hủi are complete information. Unknown to him are the rates-of-return of the potential investment opportunities of his opponent participants in the hủi: like the rate-of-return to his potential investment opportunity, these are the private of his opponent participants in the hủi.

Within this environment, we assume that a participant seeks to do the best he can given the limited resources at his disposal. All economic actors are assumed to make the decision to participate in an hủi freely. In our empirical framework, we impose the restriction that all participants in an hủi satisfy an individual-rationality constraint concerning their rates-of-return. Having chosen to participate in an hủi, we assume that the objective of a participant is to maximize the expected monetary return from the duration of the hủi, conditional on the behaviour of his opponents. Because borrowing at a financial institution is really not an option for hủi participants and because many in the community are reticent to deposit money in banks, the opportunity cost is effectively zero. Thus, for any participant, all decisions are made vis-à-vis the rate-of-return of his potential investment opportunity.

With this imagined environment as a backdrop, we should now like to develop a model of equilibrium behaviour in an hủi. Consider a set \(\{0, 1, 2, \ldots, N\} \) of \((N + 1)\) players: the banker plus \(N\) potential borrowers and lenders. At the beginning of the hủi-auction game, each participant deposits \(u\) with player 0, the banker. We
assume that each participant \(n = 1, 2, \ldots, N \) receives an independent random draw \(R \) from a cumulative distribution function of returns \(F^0_R(r) \) that has support \([r, \bar{r}]\), with corresponding probability density function \(f^0_R(r) \) that is strictly positive on \([r, \bar{r}]\). We interpret participant \(n \)'s draw \(r_n \) as that participant's rate-of-return on an investment opportunity, and assume that this draw is his private information in the sense that each participant knows his draw, but not those of his opponents. All that participants know about the draws of their opponents is that those draws are independent and from the same distribution \(F^0_R(\cdot) \). Initially, we assume that the rates-of-return for the \(N \) hues are drawn just once, in the initial period, when the total sum \(Nu \) is deposited.\(^4\) In that period, and in each period thereafter, an auction is held to decide who will win that round of the hue and what bid discount will be paid. In each round of the hue, the auction is conducted using the first-price, sealed-bid format, after which only the winning bid is revealed.

For an hue having \(N \) rounds, we introduce the following notation to denote the ordered rates-of-return of participants, from largest to smallest:

\[
r_{(1)} \geq r_{(2)} \geq \cdots \geq r_{(N)}
\]

and

\[
w_1, w_2, \cdots, w_{N-1}, w_N = 0
\]

to denote the winning bids in the \(N \) rounds of the hue. We have imposed the universally-observed outcome that \(w_N \), the winning bid in the final round of all hues, is always zero. In addition, although this is rarely stated, the reserve price in any round of an hue is also zero.

Given the description of the hue in the introduction, we can deduce that partic-

\(^4\)An alternative assumption, which we shall investigate later, is that, in each successive round, the remaining participants get a new sample of independent draws from \(F^0_R(\cdot) \). Yet a third assumption would involve shocks to the initial draws over time for the remaining participants.
Participants will exit the auction according to their rate-of-return draws—the highest first, then the second-highest, and so forth. Note, too, that, once the first round allocation has been determined, then the decision problem changes: in short, the highest-valued rate-of-return participant has been removed from the pool. From a decision-theoretic perspective, however, none of the remaining \((N-1)\) participants has learned anything about the rates-of-return of their remaining opponents, save that they are all less than \(r^{(1)}\). In short, the remaining rate-of-return draws, conditional on having observed the highest-valued draw, are independent as well as identically distributed.\(^5\)

How does a participant determine how much to bid—effectively, in which round of the auction to exit? We can couch the solution to this problem in terms of the solution to a dynamic programme. For a representative participant, this dynamic programming problem has two state variables: \(t\), the round of the auction, and \(r\), the realization of his draw from the distribution of rates-of-return. We seek to construct a sequence of optimal policy (equilibrium bid) functions \(\{\sigma_t\}_{t=1}^N\). In round \(t\), the optimal policy function \(\sigma_t\) maps the rate-of-return state \(R\) into the real line. We begin by describing the problem intuitively.

In round \(t\), the value function of participating in this round as well as all later ones can be decomposed into the expected value of winning the current round plus the discounted expected continuation value of the game, should one lose this round. Thus, the value function of a participant having rate-of-return draw \(r\) can be written

\[^5\text{How can the highest-valued draw } r^{(1)} \text{ be deduced? Well, in the first round, it is} \]

\[r^{(1)} = \sigma_1^{-1}(w_1) \]

where \(w_1\) is the winning bid in the first round, while \(\sigma_1(\cdot)\) is the symmetric equilibrium bid function for first round, which we shall construct later in this section.
as

\[V(r, t) = \max_{s > 0} \left[tu + (N - t)(u - s) - u \sum_{i=1}^{N-t} \frac{1}{(1 + r)^i} \right] \Pr(\text{win}|s, w_1, w_2, \ldots, w_{t-1}) + \]

Discounted Expected Continuation Value.

Here, the \(tu + (N - t)(u - s) \) represents the capital raised in the current period if the hui has been won, while the \(-u \sum_{i=1}^{N-t} (1 + r)^{-i} \) represents the current-valued obligations of what must be repaid, discounted using the participant’s cost-of-funds, \(r \), the rate-of-return on his potential investment.

We construct the \(\{\sigma_t\}_{t=1}^N \) as well as \(V^*(r, t) \) recursively. The solution to the bidding problem in the last round is easily found: since the reserve price in each round is zero, because he faces no competitors, the last participant need only bid zero for any rate-of-return. Thus, the optimal policy function, for all feasible \(R \), is

\[\sigma_N(r) = 0. \]

Hence, in the last round, \(N \), for any feasible value of \(R \),

\[V^*(r, N) = Nu. \]

Consider now a representative participant in the second-to-last round who has rate-of-return \(r \) and who faces only one other opponent. What is

\[\Pr(\text{win}|s, w_1, w_2, \ldots, w_{N-2})? \]

Suppose the participant’s opponent is using a monotonically increasing function \(\hat{\sigma}_{N-1}(r) \). The participant wins when his bid is higher than his opponent’s because his
rate-of-return is higher than the sole remaining opponent—in short,

$$\Pr \left(\text{win} \mid s, w_1, w_2, \ldots, w_{N-2} \right) = \frac{F_R^{0} \left[\tilde{\sigma}_{N-1}^{-1}(s) \right]}{F_R^{0} \left[r_{(N-2)} \right]} \equiv G_{R}^{N-2} \left[\tilde{\sigma}_{N-1}^{-1}(s) \right]$$

where $G_{R}^{N-2}(\cdot)$ has corresponding probability density function $g_{R}^{N-2}(\cdot)$ on $[r, r_{(N-2)}]$. Why is the upper bound of support $r_{(N-2)}$? Well, to get to this round of the game, all of the higher types must have already won. Of course, knowing the rates-of-return of all those types is unnecessary: $r_{(N-2)}$, the rate-of-return of the winner in the previous round, round $(N - 2)$, is sufficient.

What structure does the “Discounted Expected Continuation Value” have? Well, in the last round of the hũi,

$$V^*(r, N) = Nu,$$

so one part is

$$\frac{V^*(r, N)}{(1 + r)} = \frac{Nu}{(1 + r)},$$

the discounted value of the last round of the hũi. Also, if the participant loses, then he also earns $(W_{N-1} - u)$, which is the winning bid of his opponent in the second-to-last round of the hũi, minus what that participant contributed to the hũi in that round. Of course, W_{N-1} is a random variable, which always exceeds s, the choice variable of the bidder, because the bidder lost after tendering s. Thus,

$$V(r, N - 1) = \max_{<s>} \left[(N - 1)u + (u - s) - \frac{u}{(1 + r)} \right] G_{R}^{N-2} \left[\tilde{\sigma}_{N-1}^{-1}(s) \right] +$$

$$\int_{\tilde{\sigma}_{N-1}^{-1}(s)}^{r_{(N-2)}} \left(\tilde{\sigma}_{N-1}(x) - u \right) + \frac{Nu}{(1 + r)} g_{R}^{N-2}(x) \, dx.$$

The above expression warrants some explanation. The integral on the right-hand side of the equal sign represents the discounted expected continuation value should the participant lose this round of the hũi. A participant loses this round when his oppo-
inent bid more than him because that opponent has an higher rate-of-return. Hence, the term \(\hat{\sigma}_{N-1}^{-1} (s) \) in the lower bound of integration. The term \(g_{R}^{N-2} (x) \) represents the probability density function of the rate-of-return of the opponent.

The following first-order condition is a necessary condition for an optimum:

\[
\frac{dV(r, N-1)}{ds} = \left[(N - 1)u + (u - s) - \frac{u}{1 + r} \right] g_{R}^{N-2} \left[\hat{\sigma}_{N-1}^{-1} (s) \right] \frac{d\hat{\sigma}_{N-1}^{-1} (s)}{ds} - \\
G_{R}^{N-2} \left[\hat{\sigma}_{N-1}^{-1} (s) \right] = \left[(s - u) + \frac{Nu}{1 + r} \right] g_{R}^{N-2} \left[\hat{\sigma}_{N-1}^{-1} (s) \right] \frac{d\hat{\sigma}_{N-1}^{-1} (s)}{ds} = 0.
\]

In a symmetric equilibrium, \(s = \hat{\sigma}_{N-1} (r) \) and, by monotonicity, \(d\hat{\sigma}_{N-1}^{-1} (s)/ds \) equals \(1/[d\hat{\sigma}_{N-1} (r)/dr] \), so the first-order condition above can be re-written as the following ordinary differential equation:

\[
\frac{d\sigma_{N-1} (r)}{dr} + \frac{2f_{0}^{0}(r)}{F_{R}(r)} \sigma_{N-1} (r) = \left[\frac{r(N + 1)u}{1 + r} \right] \frac{f_{0}^{0}(r)}{F_{R}^{2}(r)}.
\]

The initial condition is \(\sigma_{N-1} (r) \) equal \(ru \): when a participant has the lowest possible rate-of-return, he bids the value of that rate-of-return in terms of the hũi deposit \(u \). Later, we assume \(r \) is zero, so the initial condition will be zero. In any case,

\[
\sigma_{N-1} (r) = \frac{\int_{x}^{r} \left[\frac{x(N+1)u}{(1+x)} \right] F_{R}^{0}(x) f_{R}^{0}(x) \, dx}{F_{R}^{2}(r)} + ru \\
= \left[\int_{x}^{r} \left[\frac{x(N+1)}{(1+x)} \right] F_{R}^{0}(x) f_{R}^{0}(x) \, dx \right] \frac{1}{F_{R}^{2}(r)} + ru \\
\equiv \sigma_{N-1,1} (r) u.
\]

In other words, \(\sigma_{N-1} (\cdot) \) is homogeneous of degree one in \(u \). Here, the notation \(\sigma_{N-1,1} (\cdot) \) is used to denote that this is a bid function when \(u \) is one, a “unit” bid
function. Also,

\[
V^*(r, N-1) = \left[Nu - \sigma_{N-1}(r) - \frac{u}{1+r} \right] G^{N-2}_R(r) + \\
\int_r^{r(N-2)} \left(\sigma_{N-1}(x) - u + \frac{Nu}{1+r} \right) g^{N-2}_R(x) \, dx,
\]

which is homogeneous of degree one in \(u \), too.

Consider round \((N-2)\) next. Now,

\[
V(r, N-2) = \max_{s} \left[(N-2)u + 2(u - s) - \sum_{i=1}^{2} \frac{u}{(1+r)^i} \right] G^{N-3}_R \left[\hat{\sigma}^{-1}_{N-2}(s) \right]^2 + \\
\int_{\hat{\sigma}^{-1}_{N-2}(s)}^{r(N-3)} \left(\hat{\sigma}_{N-2}(x) - u + \frac{V^*(r, N-1)}{1+r} \right) 2G^{N-3}_R(x)g^{N-3}_R(x) \, dx
\]

where

\[
G^{N-3}_R \left[\hat{\sigma}^{-1}_{N-2}(s) \right] = \frac{F^0_R [\hat{\sigma}^{-1}_{N-2}(s)]}{F^0_R [r_{(N-3)}]},
\]

with corresponding probability density function \(g^{N-3}_R(\cdot) \) on \([r, r_{(N-3)}]\). The above expression also warrants some explanation. In particular, what about the term \(G^{N-3}_R(\cdot) \)? In this round, there are two opponents, so \(G^{N-3}_R(\cdot) \) is the cumulative distribution function of the maximum of their two rates-of-return, while \(2G^{N-3}_R(\cdot)g^{N-3}_R(\cdot) \) is the probability density function of that maximum.

At a stationary point, the following first-order condition obtains:

\[
\frac{dV(r, N-2)}{ds} = \left[(N-2)u + 2(u - s) - u \sum_{i=1}^{2} \frac{1}{(1+r)^i} \right] \times \\
2G^{N-3}_R \left[\hat{\sigma}^{-1}_{N-2}(s) \right] g^{N-3}_R \left[\hat{\sigma}^{-1}_{N-2}(s) \right] \frac{d\hat{\sigma}^{-1}_{N-2}(s)}{ds} - 2G^{N-3}_R \left[\hat{\sigma}^{-1}_{N-2}(s) \right]^2 - \\
\left(s - u + \frac{V^*(r, N-1)}{1+r} \right) 2G^{N-3}_R \left[\hat{\sigma}^{-1}_{N-2}(s) \right] g^{N-3}_R \left[\hat{\sigma}^{-1}_{N-2}(s) \right] = 0.
\]

Again, in a symmetric equilibrium, \(s = \hat{\sigma}_{N-2}(r) \) and, by monotonicity, \(d\hat{\sigma}^{-1}_{N-2}(s)/ds \)
equals \(1/|d\hat{\sigma}_{N-2}(r)/dr|\), so the first-order condition above can be re-written as the following ordinary differential equation:

\[
\frac{d\hat{\sigma}_{N-2}(r)}{dr} + \frac{3f^0_R(r)}{F^0_R(r)}\hat{\sigma}_{N-2}(r) = \left[(N+1)u - u \sum_{i=1}^{2} \frac{1}{(1+r)^i} - \frac{V^*(r, N-1)}{(1+r)}\right] \frac{f^0_R(r)}{F^0_R(r)}.
\]

The solution has the same initial condition as above, so

\[
\hat{\sigma}_{N-2}(r) = \int_{\hat{\sigma}}^{r} \left((N+2)u - \frac{(1+x)}{x} \left[1 - \frac{1}{(1+x)^3} - \frac{V^*(x, N-1)}{(1+x)}\right] F^0_R(x)^2 f^0_R(x) \, dx + ru \right)
\]

\[
= \left[\int_{\hat{\sigma}}^{r} \left((N+2) - \frac{(1+x)}{x} \left[1 - \frac{1}{(1+x)^3} - \frac{V^*(x, N-1)}{(1+x)}\right] F^0_R(x)^2 f^0_R(x) \, dx \right] + ru \right] u
\]

\[
\equiv \sigma_{N-2,1}(r)u
\]

where \(\sigma_{N-2,1}(\cdot)\) is the unit bid function, and \(V^*_1(\cdot, \cdot)\) is the “unit” value function.

Here, we have used the fact that

\[
\sum_{i=0}^{k} \frac{1}{(1+r)^i} = \frac{(1+r)}{r} \left[1 - \frac{1}{(1+r)^{k+1}}\right].
\]

In general, for rounds \(t = 2, 3, \ldots, N - 1\), we have

\[
V(r, t) = \max_{\langle s \rangle} \left[tu + (N - t)(u - s) - \sum_{i=1}^{N-t} \frac{u}{(1+r)^i} \right] G^t_R \left[\hat{\sigma}^{-1}_t(s)\right]^{N-t} + \\
\int_{\hat{\sigma}_t^{-1}(s)}^{r(t-1)} \left(\hat{\sigma}_t(x) - u + \frac{V^*(r, t+1)}{(1+r)}\right) (N-t)G^{t-1}_R(x) G^{t-1}_R(x) f^0_R(x) \, dx
\]

where

\[
G^t_R \left[\hat{\sigma}^{-1}_t(s)\right] = \frac{F^0_R \left[\hat{\sigma}^{-1}_t(s)\right]}{F^0_R \left[r(t-1)\right]},
\]

with corresponding probability density function \(g^t_R(\cdot)\) on \([\hat{\sigma}, r(t-1)]\). At a stationary
point, the following first-order condition obtains:

\[
\frac{dV(r,t)}{ds} = \left[tu + (N-t)(u-s) - u \sum_{i=1}^{N-t} \frac{1}{(1+r)^i} \right] \times \\
(N-t)G_{r}^{t-1} \left[\hat{\sigma}^{-1}(s) \right]^{N-t-1} g_{r}^{t-1} \left[\hat{\sigma}^{-1}(s) \right] \frac{d\hat{\sigma}^{-1}(s)}{ds} - (N-t)G_{r}^{t-1} \left[\hat{\sigma}^{-1}(s) \right]^{N-t} \\
(s-u) + \frac{V^*(r,t+1)}{(1+r)} \right] (N-t)G_{r}^{t-1} \left[\hat{\sigma}^{-1}(s) \right]^{N-t-1} g_{r}^{t-1} \left[\hat{\sigma}^{-1}(s) \right] \frac{d\hat{\sigma}^{-1}(s)}{ds} = 0,
\]

so the first-order condition can now be re-written as the following ordinary differential equation:

\[
\frac{d\hat{\sigma}(r)}{dr} + \frac{(N-t+1)f_{R}^{0}(r)}{F_{R}^{0}(r)} \hat{\sigma}(r) = \left[(N+1)u - u \sum_{i=1}^{N-t} \frac{1}{(1+r)^i} - \frac{V^*(r,t+1)}{(1+r)} \right] \frac{f_{R}^{0}(r)}{F_{R}^{0}(r)}
\]

which has solution

\[
\sigma(t) = \int_{\sigma_{1}(r)}^{\tau} \left[(N+2)u - \frac{(1+x)}{x} \left[1 - \frac{1}{(1+x)^{N-t+1}} \right] u - \frac{V^*(x,t+1)}{(1+x)} \right] \frac{F_{R}^{0}(x)(N-t)f_{R}^{0}(x)}{F_{R}^{0}(r)(N-t+1)} + \int_{\sigma_{1}(r)}^{\tau} u \\
= \left[\int_{\sigma_{1}(r)}^{\tau} \left[(N+2) - \frac{(1+x)}{x} \left[1 - \frac{1}{(1+x)^{N-t+1}} \right] - \frac{V^*(x,t+1)}{(1+x)} \right] \frac{F_{R}^{0}(x)(N-t)f_{R}^{0}(x)}{F_{R}^{0}(r)(N-t+1)} + \int_{\sigma_{1}(r)}^{\tau} u \\
\equiv \sigma_{t,1}(r)u.
\]

The structure of the value function in the first round of the hui is slightly different: in particular, because no previous bids have been observed, the upper bound of integration is now \(\tau\), the upper bound of support of \(R\). Thus,

\[
V(r,1) = \max_{<s>} \left[u + (N-1)(u-s) - \sum_{i=1}^{N-1} \frac{u}{(1+r)^i} \right] F_{R}^{0} \left[\hat{\sigma}^{-1}(s) \right]^{N-1} + \\
\int_{\sigma_{1}(r)}^{\tau} \left[\hat{\sigma}_{1}(x) - u \right] + \frac{V^*(r,2)}{(1+r)} (N-1)F_{R}^{0}(x)(N-2)f_{R}^{0}(x) \right] \frac{d\hat{\sigma}_{1}(x)}{ds}.
\]

In the equation above, we have noted that \(G_{R}^{0}(\cdot)\) is simply \(F_{R}^{0}(\cdot)\). At a stationary
point, the following first-order condition obtains:

\[
\frac{dV(r, 1)}{ds} = \left[u + (N - 1)(u - s) - u \sum_{i=1}^{N-1} \frac{1}{(1 + r)^i} \right] \times \\
(N - 1) F_R^0 \left[\dot{\sigma}^{-1}_1(s) \right]^{N-2} f_R^0 \left[\dot{\sigma}^{-1}_1(s) \right] \frac{d\dot{\sigma}_1^{-1}(s)}{ds} - (N - 1) F_R^0 \left[\dot{\sigma}^{-1}_1(s) \right]^{N-1} - \\
\left[(s - u) + \frac{V^*(r, 2)}{(1 + r)} \right] (N - 1) F_R^0 \left[\dot{\sigma}^{-1}_1(s) \right]^{N-2} f_R^0 \left[\dot{\sigma}^{-1}_1(s) \right] \frac{d\dot{\sigma}_1^{-1}(s)}{ds} = 0,
\]

so the first-order condition can be re-written as the following ordinary differential equation:

\[
\frac{d\dot{\sigma}_1(r)}{dr} + \frac{N F_R^0(r)}{F_R^0(r)} \dot{\sigma}_1(r) = \left[(N + 1)u - u \sum_{i=1}^{N-1} \frac{1}{(1 + r)^i} - V^*(r, 2) \right] \frac{f_R^0(r)}{F_R^0(r)},
\]

which has solution

\[
\sigma_1(r) = \frac{\int_r^\infty \left((N + 2)u - \frac{(1+x)}{x} \left[1 - \frac{1}{(1+x)^N} \right] u - \frac{V^*(x, 2)}{(1+x)} \right) F_R^0(x)^{(N-1)} f_R^0(x) \ dx}{F_R^0(r)^N} + r u
\]

\[
= \left[\frac{\int_r^\infty \left((N + 2) - \frac{(1+x)}{x} \left[1 - \frac{1}{(1+x)^N} \right] - \frac{V^*(x, 2)}{(1+x)} \right) F_R^0(x)^{(N-1)} f_R^0(x) \ dx}{F_R^0(r)^N} + r \right] u
\]

\[
\equiv \sigma_{1,1}(r) u.
\]

This theoretical model has some strong similarities to one developed in Harris et al. [1995]. In that paper, Harris et al. [1995], showed that a subgame-perfect equilibrium need not exist in a model very similar to the one developed above. We believe that a finite time horizon in conjunction with a recursive structure allows us to focus on a pure-strategy equilibrium, which is unique.
2.1 Properties of Equilibrium Bid and Optimal Value Functions

For rounds $t = 1, 2, \ldots, N - 1$, denoting τ by $r(0)$, the unit value function is

$$V^*_1(r, t) = \left((N + 1) - \frac{(1 + r)}{r} \left[1 - \frac{1}{(1 + r)^{N-t+1}}\right] - (N - t)\sigma_{t,1}(r)\right)G^{t-1}_R(r)^{N-t} +$$

$$\int_r^{r(t-1)} \left(\left[\sigma_{t,1}(x) - u\right] + \frac{V^*_1(r, t + 1)}{(1 + r)}\right) (N - t)G^{t-1}_R(x)^{N-t-1}g^{t-1}_R(x) \, dx.$$

As demonstrated above, the value function is homogeneous of degree one in u, which means that

$$V^*(r, t) = V^*_1(r, t)u.$$

Thus, all calculations can be done in terms of a unit bid and unit value functions $\sigma_{t,1}(r)$ and $V^*_1(r, t)$, and then just multiplied by to get $\sigma_t(r)$ and $V^*(r, t)$, respectively.

In the empirical part of our research, when different huis have different deposit sums, this simplifies matters considerably. Of course, when the numbers of rounds in huis differ, there is no easy way to adjust for that.

As it stands, one problem with the theoretical model is that it cannot generate the pattern in figure 1, which is a sequence of bids across rounds of an actual huis. In other words, under the model as specified above, the winning bids cannot rise across successive rounds of the huis because the participants exit in order of rate-of-return, from highest to smallest, and the number of opponents fall as the huis proceeds.

How could such a saw-tooth pattern be generated in an equilibrium model of the huis? One straightforward way to reconcile the observed bidding outcomes with a model having the above structure is to allow the remaining participants in any round of the huis to get new random draws from the cumulative distribution function $F^0_R(r)$.
Figure 1: Winning Discount versus Rounds
Under this assumption, in rounds $t = 1, 2, \ldots, N - 1$, the value function is

$$V(r, t) = \max_{<s>} \left[tu + (N - t)(u - s) - \sum_{i=1}^{N-t} \frac{u}{(1+r)^i} \right] F_R^0 [\hat{\sigma}_t^{-1}(s)]^{N-t} + \int_{\hat{\sigma}_t^{-1}(s)}^r \left(\hat{\sigma}_t(x) - u \right) + \mathbb{E} \left[\frac{V^*(R, t + 1)}{(1 + R)} \right] (N - t) F_R^0(x)^{N-t-1} f_R^0(x) \, dx.$$

Note that the upper bounds of support no longer depend on previous order statistics of rates-of-return. Also, because new draws are obtained in each period, one must take the expectation of the discounted continuation value function over all feasible values of R. At a stationary point, the following first-order condition obtains:

$$\frac{dV(r, t)}{ds} = \left((N + 1)u - (N - t + 1)s - u \sum_{i=1}^{N-t} \frac{1}{(1+r)^i} - \mathbb{E} \left[\frac{V^*(R, t + 1)}{(1 + R)} \right] \right) \times (N - t) F_R^0 [\hat{\sigma}_t^{-1}(s)]^{N-t-1} f_R^0 [\hat{\sigma}_t^{-1}(s)] \frac{d\hat{\sigma}_t^{-1}(s)}{ds} - (N - t) F_R^0 [\hat{\sigma}_t^{-1}(s)]^{N-t} = 0,$$

so the first-order condition can be re-written as the following ordinary differential equation:

$$\frac{d\hat{\sigma}_t(r)}{dr} + \frac{(N - t + 1) f_R^0(r)}{F_R^0(r)} \hat{\sigma}_t(r) = \left((N+1)u-u \sum_{i=1}^{N-t} \frac{1}{(1+r)^i} - \mathbb{E} \left[\frac{V^*(R, t + 1)}{(1 + R)} \right] \right) \frac{f_R^0(r)}{F_R^0(r)},$$

which has solution

$$\sigma_t(r) = \int_{\hat{\sigma}_t^{-1}(r)}^r \left((N + 2)u - \frac{(1+x)}{x} \left[1 - \frac{1}{(1+x)^{N-t+1}} \right] u - \mathbb{E} \left[\frac{V^*(R, t+1)}{(1 + R)} \right] \right) F_R^0(x)^{(N-t)} f_R^0(x) \, dx$$

$$= \left[\int_{\hat{\sigma}_t^{-1}(r)}^r \left((N + 2) - \frac{(1+x)}{x} \left[1 - \frac{1}{(1+x)^{N-t+1}} \right] - \mathbb{E} \left[\frac{V^*(R, t+1)}{(1 + R)} \right] \right) F_R^0(x)^{(N-t)} f_R^0(x) \, dx \right] + r u$$

$$\equiv \sigma_{t,1}(r)u.$$
Thus,

\[
V^*_1(r, t) = \left((N + 1) - \frac{(1 + r)}{r} \left[1 - \frac{1}{(1 + r)^{N-t+1}} \right] - (N - t)\sigma_{t,1}(r) \right) F^0_R(r)^{N-t} + \\
\int_r^\mathcal{P} \left[\sigma_{t,1}(x) - 1 \right] + \mathbb{E} \left[\frac{V^*_1(R, t + 1)}{1 + R} \right] (N - t)F^0_R(x)^{N-t-1}f^0_R(x) \, dx.
\]

Building \(V^*_1(r, t) \) recursively is much simpler under this model than under the previous one. Specifically,

\[
V^*_1(r, N) = N \\
V^*_1(r, N-1) = \left[\left((N + 1) - \frac{(1 + r)}{r} \left[1 - \frac{1}{(1 + r)^2} \right] - \sigma_{N-1,1}(r) \right) F^0_R(r) + \\
\int_r^\mathcal{P} \left[\sigma_{N-1,1}(x) - 1 \right] + \mathbb{E} \left[\frac{N}{1 + R} \right] F^0_R(x) \, dx
\]

\[
\vdots = \vdots \\
V^*_1(r, t) = \left[\left((N + 1) - \frac{(1 + r)}{r} \left[1 - \frac{1}{(1 + r)^{N-t+1}} \right] \right) - (N - t)\sigma_{t,1}(r) \right) F^0_R(r)^{N-t} + \\
\int_r^\mathcal{P} \left[\sigma_{t,1}(x) - 1 \right] + \mathbb{E} \left[\frac{V^*_1(R, t + 1)}{1 + R} \right] (N - t)F^0_R(x)^{N-t-1}f^0_R(x) \, dx
\]

\[
\vdots = \vdots \\
V^*_1(r, 1) = \left[\left((N + 1) - \frac{(1 + r)}{r} \left[1 - \frac{1}{(1 + r)^N} \right] \right) - (N - 1)\sigma_{1,1}(r) \right] F^0_R(r)^{N-1} + \\
\int_r^\mathcal{P} \left[\sigma_{1,1}(x) - 1 \right] + \mathbb{E} \left[\frac{V^*_1(R, 2)}{1 + R} \right] (N - 1)F^0_R(x)^{N-2}f^0_R(x) \, dx.
\]

Under this alternative assumption, increases in the winning discount bid across rounds of an hũi can obtain because an unusually high rate-of-return draw in a later
round may occur and this event can more than make-up for the decrease in equilibrium bidding behaviour that obtains because there are fewer participants in later rounds, and the option values are higher in later rounds of the hũi, holding R constant. Nevertheless, the trend in the winning discount bid should, on average, be downward sloping across rounds of the hũi, as it is in figure 1.

2.2 Analysis of Equilibrium Differential Equations

In this subsection, we present an analysis of the equilibrium differential equation. In order to save on notation, we eliminate subscripts and superscripts on the probability density and cumulative distribution functions. We also substitute the letters ℓ and v for

$$
\ell = \frac{(1 + r)}{r} \left[1 - \frac{1}{(1 + r)^{N-t+1}} \right]
$$

and

$$
v = \frac{V^*_1(r, t + 1)}{(1 + r)} \quad \text{or} \quad v = \mathbb{E} \left[\frac{V^*_1(R, t + 1)}{(1 + R)} \right],
$$

respectively. Thus, we can write an equilibrium differential equation as

$$
\frac{d\sigma_t}{dr} = \left[(N + 2 - \ell) - v \right] \frac{f}{F} - \sigma_t \frac{f}{F}
$$

$$
= (\theta - \sigma_t) \frac{f}{F}.
$$

Now, suppose that $\frac{f}{F}$ is a constant. Then,

$$
\frac{d\sigma_t}{dr} = \alpha(\theta - \sigma_t)
$$

$$
\frac{d}{dr} \left[\exp(\alpha r)\sigma_t \right] = \alpha \exp(\alpha r)\sigma_t + \exp(\alpha r)\alpha(\theta - \sigma_t)
$$

$$
= \alpha \exp(\alpha r)\theta.
$$
Thus,
\[
\int_{r_j}^{r_j+h} d [\exp(\alpha r) \sigma_i] = \int_{r_j}^{r_j+h} \alpha \exp(\alpha r) \theta \, dr \\
= \exp[\alpha (r_j + h)] \sigma_i (r_j + h) - \exp(\alpha r_j) \sigma_i (r_j) \\
= \theta [\exp(\alpha r)]_{r_j}^{r_j+h}.
\]

Therefore,
\[
\sigma_i (r_j + h) = \exp(-\alpha h) \sigma_i (r_j) + \theta [1 - \exp(-\alpha h)].
\]

Consider as an example,
\[
\frac{d \sigma_i}{dr} = [(N + 2 - \ell) - v] \frac{f}{F} - 2 \sigma_i \frac{f}{F} \\
= (\theta - 2 \sigma_i) \alpha \left[\frac{d}{dr} \exp(2 \alpha r) \sigma_i (r) \right] \\
= \sigma_i (r) \frac{d}{dr} \exp(2 \alpha r) + \exp(2 \alpha r) \frac{d \sigma_i (r)}{dr} \\
= 2 \alpha \exp(2 \alpha r) \sigma_i (r) + \alpha \exp(2 \alpha r) [\theta - 2 \sigma_i (r)] \\
= \alpha \theta \exp(2 \alpha r),
\]

so
\[
\int_{r_j}^{r_j+h} d [\exp(2 \alpha r) \sigma_i (r)] = \int_{r_j}^{r_j+h} \alpha \exp(2 \alpha r) \theta \, dr \\
= \exp[2 \alpha (r_j + h)] \sigma_i (r_j + h) - \exp(2 \alpha r_j) \sigma_i (r_j) \\
= \theta \frac{1}{2} [\exp(2 \alpha r)]_{r_j}^{r_j+h}.
\]

Therefore,
\[
\sigma_i (r_j + h) = \exp(-2 \alpha h) \sigma_i (r_j) + \frac{\theta}{2} [1 - \exp(-2 \alpha h)].
\]
In general,
\[
\sigma_t(r_j + h) = \exp(-t\alpha h)\sigma_t(r_j) + \frac{\theta}{t}[1 - \exp(-t\alpha h)] \quad t = 1, 2, \ldots, N - 1.
\]

What does it all mean? Well, there is a strong attractor to this equilibrium differential equation, and this attractor gets stronger as the rounds of the ē̈i proceed. In practical terms, the equilibrium bid functions in later round will be weakly higher at the right-hand part of the interval \([\underline{r}, \bar{r}]\) than in early rounds.

2.3 Numerical Solution of First-Order Ordinary Differential Equations

Consider the following first-order ordinary differential equation for \(\sigma\) as a function of \(r\):

\[
\frac{d\sigma(r)}{dr} = D(r, \sigma).
\]

(1)

Several different numerical methods exist to solve differential equations like (1). The simplest of the finite difference methods is, of course, Euler’s method: starting at \(r_0\), an initial \(r\)—say, \(\underline{r}\), where \(\sigma(\underline{r})\) is \(\underline{r}\) in our case—the value of \(\sigma(\underline{r} + h)\) can then be approximated by the value of \(\sigma(\underline{r})\) plus the step \(h\) multiplied by the slope of the function, which is the derivative of \(\sigma(r)\), evaluated at \(\underline{r}\). This is simply a first-order Taylor-series expansion, so

\[
\sigma(\underline{r} + h) \approx \sigma(\underline{r}) + h \frac{d\sigma(r)}{dr}\bigg|_{r=\underline{r}} = \sigma(\underline{r}) + hD[\underline{r}, \sigma(\underline{r})].
\]

Denoting this approximate value by \(\sigma_1\), and the initial value by \(\sigma_0\), we have

\[
\sigma_1 = \sigma(\underline{r}) + h \frac{d\sigma(r)}{dr}\bigg|_{r=\underline{r}} = \sigma(\underline{r}) + hD[\underline{r}, \sigma(\underline{r})] = \sigma_0 + hD(r_0, \sigma_0) = \sigma_0 + hD_0.
\]

(2)
If one can calculate the value of $d\sigma/dr$ at r using equation (1), then one can generate an approximation for the value of σ at r equal $(r+h)$ using equation (2). One can then use this new value of σ, at $(r+h)$, to find $d\sigma/dr$ (at the new r) and repeat. When $D(r, \sigma)$ does not change too quickly, the method can generate an approximate solution of reasonable accuracy. For example, on an infinite-precision computer, the local truncation error is $O(h^2)$, while the global error is $O(h)$—first-order accuracy.

When the differential equation changes very quickly in response to a small step h, then it is referred to as a stiff differential equation. To solve stiff differential equations using Euler’s method, h must be very small, which means that Euler’s methods will take a long time to compute an accurate solution. While this may not be an issue when one just wants to do this once, in empirical work concerning auctions, one may need to solve the differential equation thousands (even millions) of times.

Perhaps the most well-known generalization of Euler’s method is a family of methods referred to collectively as Runge–Kutta methods. Of all the members in this family, the one most commonly used is the fourth-order method, sometimes referred to as RK4. Under RK4,

$$\sigma_{k+1} = \sigma_k + \frac{h}{6}(d_1 + 2d_2 + 2d_3 + d_4)$$

where

$$d_1 = D(r_k, \sigma_k)$$

$$d_2 = D\left(r_k + \frac{1}{2}h, \sigma_k + \frac{1}{2}hd_1\right)$$

$$d_3 = D\left(r_k + \frac{1}{2}h, \sigma_k + \frac{1}{2}hd_2\right)$$

$$d_4 = D\left(r_k + h, \sigma_k + hd_3\right).$$

Thus, the next value σ_{k+1} is determined by the current one σ_k, plus the product of the step size h and an estimated slope. The estimated slope is a weighted average
of slopes: \(d_1 \) is the slope at the left endpoint of the interval; \(d_2 \) is the slope at the midpoint of the interval, using Euler’s method along with slope \(d_1 \) to determine the value of \(\sigma \) at the point \((r_k + \frac{1}{2} h) \); \(d_3 \) is again the slope at the midpoint, but now using the slope \(d_2 \) is used to determine \(\sigma \); and \(d_4 \) is the slope at the right endpoint of the interval, with its \(\sigma \) value determined using \(d_3 \). Assuming the Lipschitz condition is satisfied, the local truncation error of the RK4 method is \(O(h^5) \), while the global truncation error is \(O(h^4) \), which is an huge improvement over Euler’s method. Note, too, that if \(D(\cdot) \) does not depend on \(\sigma \), so the differential equation is equivalent to a simple integral, then RK4 is simply Simpson’s rule, a well-known and commonly-used quadrature rule.

Like Euler’s method, however, Runge–Kutta methods do not always perform well on stiff problems; for more on this, see ?. Note, too, that neither the method of Euler nor the methods of Runge–Kutta use past information to improve the approximation as one works to the right.

In response to these limitations, numerical analysts have pursued a variety of other strategies. For a given \(h \), these alternative methods are more accurate than Euler’s method, and may have a small error constant than Runge–Kutta methods as well. Some of the alternative methods are referred to as multi-step methods. Under multi-step methods, one again starts from an initial point \(r \) and then takes a small step \(h \) forward in \(r \) to find the next value of \(\sigma \). The difference is that, unlike Euler’s method (which is a single-step method that refers only to one previous point and its derivative at that point to determine the next value), multi-step methods use some intermediate points to obtain an higher-order approximation of the next value. Multi-step methods gain efficiency by keeping track of as well as using the information from previous steps rather than discarding it. Specifically, multi-step methods use the values of the function at several previous points as well as the derivatives (or some of
them) at those points.

Linear multi-step methods are special cases in the class of multi-step methods. As the name suggests, under these methods, a linear combination of previous points and derivative values is used to approximate the solution. Denote by \(m \) the number of previous steps used to calculate the next value. Denote the desired value at the current stage by \(\sigma_{k+m} \). A linear multi-step method has the following general form:

\[
\sigma_{k+m} + a_{m-1}\sigma_{k+m-1} + a_{m-2}\sigma_{k+m-2} + \cdots + a_0\sigma_k = h [b_m D(r_{k+m}, \sigma_{k+m}) + b_{m-1} D(r_{k+m-1}, \sigma_{k+m-1}) + \cdots + b_0 D(r_k, \sigma_k)].
\]

The values chosen for \(a_0, \ldots, a_{m-1} \) and \(b_0, \ldots, b_m \) determine the solution method; a numerical analyst must choose these coefficients. Often, many of the coefficients are set to zero. Sometimes, the numerical analyst chooses the coefficients so they will interpolate \(\sigma(r) \) exactly when \(\sigma(r) \) is a \(k \)th order polynomial. When \(b_m \) is nonzero, the value of \(\sigma_{k+m} \) depends on the value of \(D(r_{k+m}, \sigma_{k+m}) \), and the equation for \(\sigma_{k+m} \) must be solved iteratively, perhaps using Newton’s method, or some other method.

A simple linear, multi-step method is the \textit{Adams–Bashforth two-step method}. Under this method,

\[
\sigma_{k+2} = \sigma_{k+1} + h \frac{3}{2} D(r_{k+1}, \sigma_{k+1}) - h \frac{1}{2} D(r_k, \sigma_k).
\]

To wit, \(a_1 = -1 \), while \(b_2 \) is zero, and \(b_1 \) is \(\frac{3}{2} \), while \(b_0 \) is \(-\frac{1}{2} \). However, to implement Adams–Bashforth, one needs two values (\(\sigma_{k+1} \) and \(\sigma_k \)) to compute the next value \(\sigma_{k+2} \). In a typical initial-value problem, only one value is provided; in our case, for example, \(\sigma(r) \) or \(\sigma_0 \) equals \(r \) or \(r_0 \) is the only condition provided. One way to circumvent this lack of information is to use the \(\sigma_1 \) computed by Euler’s method as the second value. With this choice, the Adams–Bashforth two-step method yields a
candidate approximating solution.

For other values of m, has provided explicit formulas to implement the Adams–Bashforth methods. Again, assuming the Lipschitz condition is satisfied, the local truncation error of the Adams–Bashforth two-step method is $O(h^3)$, while the global truncation error is $O(h^2)$. (Other Adams–Bashforth methods have local truncation errors that are $O(h^5)$ and global truncation errors that are $O(h^4)$, and are, thus, competitive with RK4.)

In addition to Adams–Bashforth, two other families are also used: first, Adams–Moulton methods and, second, backward differentiation formulas (BDFs).

Like Adams–Bashforth methods, the Adams–Moulton methods have a_{m-1} equal to -1 and the other a_is equal to zero. However, where Adams–Bashforth methods are explicit, Adams–Moulton methods are implicit. For example, when m is zero, under Adams–Moulton,

$$\sigma_k = \sigma_{k-1} + hD(r_k, \sigma_k), \quad (3)$$

which is sometimes referred to as the backward Euler method, while when m is one,

$$\sigma_{k+1} = \sigma_k + \frac{1}{2} [D(r_{k+1}, \sigma_{k+1}) + D(r_k, \sigma_k)], \quad (4)$$

which is sometimes referred to as the trapezoidal rule. Note that these equations only define the solutions implicitly; that is, equations (3) and (4) must be solved numerically for σ_k and σ_{k+1}, respectively.

BDFs constitute the main other way to solve ordinary differential equations. BDFs are linear multi-step methods which are especially useful when solving stiff differential equations. From above, we know that, given equation (1), for step size h, a linear multi-step method can, in general, be written as

$$\sigma_{k+m} + a_{m-1}\sigma_{k+m-1} + a_{m-2}\sigma_{k+m-2} + \cdots + a_0\sigma_k$$
\[= h \left[b_m D(r_{k+m}, \sigma_{k+m}) + b_{m-1} D(r_{k+m-1}, \sigma_{k+m-1}) + \cdots + b_0 D(r_k, \sigma_k) \right]. \]

BDFs involve setting \(b_i \) to zero for any \(i \) other than \(m \), so a general BDF is

\[\sigma_{k+m} + a_{m-1} \sigma_{k+m-1} + a_{m-2} \sigma_{k+m-2} + \cdots + a_0 \sigma_k = h b_m D_{k+m} \]

where \(D_{k+m} \) denotes \(D(r_{k+m}, \sigma_{k+m}) \). Note that, like Adams–Moulten methods, BDFs
are implicit methods as well: one must solve nonlinear equations at each step—
typically, using Newton’s method, but some other method could be used as well.
Thus, the methods can be computationally burdensome. However, the evaluation of
\(\sigma \) at \(r_{k+m} \) in \(D(\cdot) \) is an effective way in which to discipline approximate solutions to
stiff differential equations.

The principal numerical difficulty with solving the ordinary differential equation
(??) is that it does not satisfy the Lipschitz condition at the left endpoint \(r \) because, at that point,

\[\frac{f_R^0(r)}{F_R^0(r)} = \frac{f_R^0(r)}{\int_r^r F_R^0(u) \, du} \]

is unbounded. One strategy to avoid this problem would be to analyze the equilibrium
inverse-bid function \(\varphi(s) \) which equals \(\sigma^{-1}(s) \). In this case, one obtains an ordinary
differential equation of the following form:

\[\frac{d \varphi(s)}{ds} = p(s) \varphi(s) \frac{F_R^0[\varphi(s)]}{f_R^0[\varphi(s)]} + q(s) \frac{F_R^0[\varphi(s)]}{f_R^0[\varphi(s)]} = C(s, \varphi) \] (5)

where \(p(s) \) and \(q(s) \) are known functions, and where the initial value involves \(\varphi(\bar{s}) \)
equalling \(\bar{\tau} \). In this formulation, however, \(\bar{s} \) is unknown, so the problem is sometimes
referred to as a free boundary-value problem, which can be solved using the method
of backward shooting (reverse shooting). Under backward (reverse) shooting, one
specifies an initial guess for \(\bar{s} \), and then solves the system backward (in reverse)
toward $\varphi(r)$, which must equal r at the left endpoint using any of the methods we have described above. However, we have demonstrated that, for this problem, backward shooting methods are numerically unstable.

\[?, ? , ?\]

2.3.1 Some Solved Examples

When N is thirty, while u is one, and R is distributed $B(\theta_1, \theta_2)$ on the interval $[0, \theta_3]$, so

$$f^0_R(r; \theta) = \frac{r^{\theta_1-1}(\theta_3 - r)^{\theta_2-1}}{B(\theta_1, \theta_2)\theta_3^{\theta_1+\theta_2-1}}, \quad \theta_1 > 0, \ \theta_2 > 0, \ \theta_3 > 0,$$

where we collect θ_1, θ_2, and θ_3 into the vector θ, while

$$B(\theta_1, \theta_2) = \frac{\Gamma(\theta_1)\Gamma(\theta_2)}{\Gamma(\theta_1 + \theta_2)}$$

with

$$\Gamma(\theta) = \int_0^\infty x^{\theta-1} \exp(-x) \, dx,$$

we solved for the equilibrium bid functions $\{\sigma_{t,1}(r)\}_{t=1}^N$. In figures 2, 3, and 4, we have graphed these bid functions versus the state variable R, for different values of θ_1, θ_2, and θ_3 as well as in various rounds of the hui. In words, the curve denoted 29 signifies the first round, when a participant has 29 opponents, while 20 signifies round nine when a participant has 20 opponents, while 10 signifies round nineteen when a participant has 10 opponents, while 2 signifies the third-to-last round when a participant has 2 opponents, while 1 signifies the second-to-last round when a participant has 1 opponent.
Figure 2: Equilibrium Bid Functions: $N = 30; u = 1; \text{Various Numbers of Competitors, } 29, 20, 10, 2, 1.$
Figure 3: Equilibrium Bid Functions: $N = 30; u = 1$; Various Numbers of Competitors, 29, 20, 10, 2, 1.
Figure 4: Equilibrium Bid Functions: $N = 30; u = 1$; Various Numbers of Competitors, 29, 20, 10, 2, 1.
Table 2: Sample Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sample Size</th>
<th>Mean</th>
<th>St.Dev.</th>
<th>Minimum</th>
<th>Median</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_h</td>
<td>22</td>
<td>345.45</td>
<td>126.22</td>
<td>200</td>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>N_h</td>
<td>22</td>
<td>35.95</td>
<td>11.00</td>
<td>21</td>
<td>36</td>
<td>51</td>
</tr>
<tr>
<td>w_{ht}</td>
<td>769</td>
<td>58.98</td>
<td>32.35</td>
<td>5</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>$w_{ht,1}$</td>
<td>769</td>
<td>0.1579</td>
<td>0.0764</td>
<td>0.0200</td>
<td>0.1500</td>
<td>0.4500</td>
</tr>
</tbody>
</table>

3 Field Data

A former hủ banker, now retired, has graciously provided us with a small sample of bids from twenty-two hủ, which were held in the early 2000s in a suburb of Melbourne, Australia. As part of our agreement with this banker, we can say very little more than this. Specifically, we cannot provide demographic characteristics of the participants, nor can we describe the activities in which the funds from the hủ were invested. The reason is obvious: would you want your banker sharing your private information with us? One of the reasons the banker felt comfortable with giving us these data is that they are more than five years old. We can, however, describe the important economic variables for the sample of hủ. The hủ had N_h between 21 and 51 participants, while the deposits u were between 200 and 500. In figure 1, we depicted the winning bids, across successive rounds, for one of the hủ; the patterns of winning bids in other hủ are qualitatively similar. In table 2, we present the sample descriptive statistics over all of the hủ.

4 Econometric Model

In a very influential paper, ? (hereafter, GPV) introduced a clever trick to invert the bid function at single-object, first-price auctions and, thus, to recover the unobserved type from the observed action as well as its distribution in a non-cooperative auction game with incomplete private-valued information. In this section, we first demonstrate how to make use of this trick in the case of the hủ and, thus, demonstrate that
this model is non-parametrically identified. Subsequently, we note that implementing GPV requires more data than we have been able to gather. Because we would like to implement our theoretical model using field data, we are forced to make a parametric assumption to develop an empirical specification which we estimate using the methods developed by ??.

To begin, we outline the basic framework of GPV: consider a single-object auction at which \(N \) potential buyers vy to win the good for sale. Suppose each gets an independent draw \(V \) from the cumulative distribution of values \(F_V(v) \) that has support \([v, \bar{v}]\), with corresponding probability density function \(f_V(v) \) that is strictly positive on \([v, \bar{v}]\). Because the potential buyers are \textit{ex ante} symmetric, we can focus on the decision problem of player 1. Player 1, who has valuation draw \(v \), is assumed to maximize, by choice of bid \(s \), the following expect profit from winning the auction:

\[
E[\pi(s)] = (v - s) \Pr(\text{win}|s).
\]

But what is \(\Pr(\text{win}|s) \)? Well, player 1 wins when all of his opponents bid less than him, so

\[
\Pr(\text{win}|s) = \Pr((S_2 < s) \cap \ldots \cap (S_N < s)).
\]

Now, because the draws of potential buyers are independent,

\[
\Pr(\text{win}|s_1) = \Pr(S_2 < s) \Pr(S_3 < s) \cdots \Pr(S_N < s) = \prod_{n=2}^{N} \Pr(S_n < s).
\]

To analyze this case, focus on symmetric, Bayes–Nash equilibria. To construct an equilibrium, as in section 2, suppose that the \((N - 1)\) opponents of player 1 are using a common bidding rule \(\hat{\sigma}(V) \), which is monotonically increasing in \(V \): potential buyers who have high values bid more than those who have low values.

The probability of player 1 winning with bid \(s \) equals the probability that every
other opponent bids lower because each has a lower value, so

$$\Pr(\text{win}|s) = F_V[\hat{\sigma}^{-1}(s)]^{N-1}. $$

Given that player 1’s value v is determined before the bidding, his choice of bid s has only two effects on his expected profit

$$(v - s)F_V[\hat{\sigma}^{-1}(s)]^{(N-1)}.$$

The higher is s, the higher is $F_V[\hat{\sigma}^{-1}(s)]^{(N-1)}$, which is player 1’s probability of winning the auction, but the lower is the pay-off following a win $(v - s)$.

Maximizing behaviour implies that the optimal bidding strategy solves the following necessary first-order condition:

$$-F_V[\hat{\sigma}^{-1}(s)]^{(N-1)} + (v - s)(N - 1)F_V[\hat{\sigma}^{-1}(s)]^{(N-2)}f_V[\hat{\sigma}^{-1}(s)]\frac{d\hat{\sigma}^{-1}(s)}{ds} = 0.$$

In a symmetric equilibrium, $s = \hat{\sigma}(v)$ and, again, under monotonicity, $d\hat{\sigma}^{-1}(s)/ds$ equals $[1/\hat{\sigma}'(v)]$, so the equilibrium solution is characterized by the following ordinary differential equation:

$$\hat{\sigma}'(v) = \frac{[v - \hat{\sigma}(v)](N - 1)f_V(v)}{F_V(v)}$$ (6)

where $\hat{\sigma}'(v)$ is a short-hand notation for $d\hat{\sigma}(v)/dv$. The above equilibrium differential equation came from differentiating the following exact equilibrium solution with respect to v:

$$\hat{\sigma}(v) = v - \int_0^v \frac{F_V(u)^{N-1}}{F_V(v)^{N-1}} du.$$

Note, too, that even though $v \in [\tilde{v}, \bar{v}]$, $\hat{\sigma}(v) \in [\tilde{s}, \bar{s}]$ where $\tilde{s} = \hat{\sigma}(\tilde{v}; F_V, N) < \bar{v}$. In short, the support of S depends on the distribution $F_V(\cdot)$ as well as N. This
fact will be important later when we come to implement our parametric empirical specification.

Consider now the cumulative distribution function of an equilibrium bid $G_S(s)$ and its corresponding probability density function $g_S(s)$. Recall that, when $S = \sigma(V)$ is a monotonic function of V,

$$G_S(s) = \Pr(S \leq s) = \Pr[\sigma^{-1}(S) \leq \sigma^{-1}(s)] = \Pr(V \leq v) = F_V(v).$$

Also,

$$g_S(s) \, ds = f_V(v) \, dv$$

and

$$g_S(s) = \frac{f_V(v)}{\sigma'(v)}.$$

Thus, re-arranging equation (6) yields

$$v = s + \frac{F_V(v)\sigma'(v)}{(N-1)f_V(v)} = s + \frac{G_S(s)}{(N-1)g_S(s)}. \quad (7)$$

In short, the unobserved value v can be identified from the observed bid s as well as its distribution $G_S(s)$ which yields its density $g_S(s)$. Thus, if one is willing to substitute non-parameteric estimates of $G_S(s)$ and $g_S(s)$ into equation (7), then one can get an estimate of the unobserved v corresponding to an observed s, which one can then use to estimate the cumulative distribution and probability density functions $F_V(v)$ and $f_V(v)$.

Using a parallel reasoning, introduce $G'_S(s)$ and $g'_S(s)$ to denote the distribution of equilibrium bids in round t of an hủi having N rounds with deposit u. Denote by
the unit bid in round t of an hủi having deposit u; in other words, $s_{t,1}$ is (s_{t}/u). Now, focus on the equilibrium differential equation

$$
\frac{d\sigma_t(r)}{dr} = \left((N + 1)u - u \frac{(1 + r)}{r} \left[1 - \frac{1}{(1 + r)^{N-t+1}} \right] -
\mathbb{E} \left[\frac{V^*(R, t + 1)}{(1 + R)} \right] - (N - t + 1)\sigma_t(r) \right) \frac{f^0_R(r)}{F^0_R(r)}
$$

where $G^t_S(s_t)$ and $g^t_S(s_t)$ denote the cumulative distribution and probability density functions of equilibrium unit bids in round t. Now, the left-hand side of the above
expression is a function of observables—viz.,

$$(N + 1) - (N - t + 1)s_{t,1} - \frac{G^t_{S,1}(s_{t,1})}{g^t_{S,1}(s_{t,1})},$$

while the right-hand side is the sum of a known function of r—viz., the

$$\frac{1 + r}{r} \left[1 - \frac{1}{(1 + r)^{N-t+1}} \right],$$

and an unknown function of R—viz., the

$$\frac{V^*_1(R, t + 1)}{(1 + R)},$$

whose structure depends on the unknown $F^0_R(\cdot)$ itself, except in one case:

$$V^*_1(R, N) = N.$$

However,

$$\mathbb{E} \left[\frac{V^*_1(R, t + 1)}{(1 + R)} \right] \neq \frac{N}{(1 + r)};$$

unless we assume that current rate-of-return is used to discount, instead of the average of next-period’s draw. Suppose that the current rate-of-return r is used to discount. Then

$$(N + 1) - 2s_{N-1,1} - \frac{G^{N-1}_{S,1}(s_{N-1,1})}{g^{N-1}_{S,1}(s_{N-1,1})} = \left(\frac{1 + r}{r} \left[1 - \frac{1}{(1 + r)^{2}} \right] + \frac{N}{(1 + r)} \right)$$

$$= 2 + r + N \frac{r}{(1 + r)},$$

so r is uniquely identified by observables in the second-to-last round; its distribution can be non-parametrically estimated using the observed winning bids in the second-to-last round.
Of course, the alert reader will note that, in the second-to-last round, one only observes the winning bid, the maximum of the two bids in that round. Denote by $G_{W,1}^{N-1}(w)$ the cumulative distribution function of the winning unit bid in the second-to-last round of the hui and by $g_{W,1}^{N-1}(w)$ its corresponding probability density function.

Now,

$$W_{N-1,1} = \max(S_{N-1,1,1}, S_{N-1,1,2}),$$

so

$$G_{W,1}^{N-1}(w) = G_{S,1}^{N-1}(w)^2,$$

or

$$G_{S,1}^{N-1}(s) = \sqrt{G_{W,1}^{N-1}(s)},$$

and

$$g_{W,1}^{N-1}(w) = 2G_{S,1}^{N-1}(w)g_{S,1}^{N-1}(w),$$

so

$$g_{S,1}^{N-1}(s) = \frac{g_{W,1}^{N-1}(s)}{2G_{S,1}^{N-1}(s)} = \frac{g_{W,1}^{N-1}(s)}{2\sqrt{G_{W,1}^{N-1}(s)}}.$$

In short, the model is non-parametrically identified in the second-to-last round.

Unfortunately, we have found it difficult to gather more than a small sample of data from hui held in Melbourne in the 2000s. As mentioned, in the previous section, we have data from twenty-two hui. For each of the last rounds of those hui, we have plotted, in figure 5, the unit winning discounts. In figure 6, we present the GPV kernel-smoothed estimate of $f_0^R(r)$ (the solid line) as well as the maximum-likelihood (ML) estimate assuming a Beta distribution (the dashed line).

In light of this dearth of data and in order to implement our theoretical model, we have been forced to make a parametric assumption concerning the distribution of R. In particular, we assume that R is distributed $B(\theta_1, \theta_2)$ on the interval $[0, \theta_3]$. We
Figure 5: Final Round Unit Winning Discount Bids
Figure 6: Kernel-Smoothed and Maximum-Likelihood Estimates of $f_R^0(r)$
recognize that this three-parameter family of distributions is restrictive.

Consider \(\{(u_h, N_h, w_{1,h}, w_{2,h}, \ldots, w_{N_h-1})\}_{h=1}^H \) a sample of \(H \) hu, indexed by \(h = 1, 2, \ldots, H \). Under our second informational assumption,

\[
w_{t,h} = \sigma_t [r_{(1:N_t-t+1)}; \theta, u_h, N_h]
\]

where we have now made explicit the dependence of the winning bid discounts on both \(u_h \) and \(N_h \) as well as \(\theta \). Denote the cumulative distribution function of \(R_{(1:N_h-t+1)} \) for participants at hu. with \(t=1, 2, \ldots, N_h-t \) by

\[
F_{(1:N_h-t+1)}(r; \theta, N_h, t) = (N_h - t + 1) \int_0^{F^0_R(r; \theta)} x^{N_h-t} \, dx
\]

and its probability density function by

\[
f_{(1:N_h-t+1)}(r; \theta, N_h, t) = (N_h - t + 1) F^0_R(r; \theta)^{N_h-t} f^0_R(r; \theta).
\]

Now, the probability density function of the winning bid in round \(t \) of hu.h is then

\[
f_{W_{t,h}}(w; \theta, u_h, N_h, t) = \frac{f_{(1:N_h-t+1)}(w; \theta, u_h, N_h); \theta, N_h, t}{\sigma_t^{-1}(w; \theta, u_h, N_h); \theta, N_h, t}.
\]

Thus, collecting the \(u_h \)'s in the vector \(u \), the \(N_h \) in the vector \(N \), and the \(w_{t,h} \)'s in the vector \(w \), the logarithm of the likelihood function can be written as

\[
\mathcal{L}(\theta; u, N, w) = \sum_{h=1}^H \sum_{t=1}^{N_h-1} \left[\log \left(f_{(1:N_h-t+1)}[\sigma_t^{-1}(w_{t,h}; \theta, u_h, N_h); \theta, N_h, t] \right) - \log \left(\sigma_t'[\sigma_t^{-1}(w_{t,h}; \theta, u_h, N_h); \theta, u_h, N_h, t] \right) \right].
\]

To estimate this empirical specification, we proceeded as follows:

0. set \(k = 0 \) and initialize \(\theta \) at \(\tilde{\theta}^k \).
1. solve for $\tilde{\sigma}_{t,1}^k(r) = \sigma_{t,1}(r; \tilde{\theta}^k, N_h)$ and $\tilde{V}_{t,1}^k(r, t)$ for $t = 1, 2, \ldots, N_h - 1$ and $h = 1, 2, \ldots H$;

2. for each $w_{t,h}$ in w, then solve $(w_{t,h}/u_h) = \tilde{\sigma}_{t,1}^k[r_{(1:N_h-t+1)}]$—viz., find the $r_{(1:N_h-t+1)}$ consistent with $\tilde{\theta}^k$;

3. form the logarithm of the likelihood function for iteration k and maximize it with respect to θ, taking into account the following constraints:

$$\frac{w_{t,h}}{u_h} \leq \tilde{\sigma}_{t,1}^k(r) \quad t = 1, 2, \ldots, N_h - 1; \quad h = 1, 2, \ldots, H;$$

4. check for an improvement in the objective function: if no improvement obtains, then stop, otherwise increment k and update $\tilde{\theta}^k$ and return to step 1.

5 Empirical Results

6 Policy Experiments

An alternative way in which to conduct the auction in each round of the hủi would be to use a second-price rule. This could be done in a number of different ways, which are not outcome equivalent, even under our assumed information structure. Under other information structures, such as ones having affiliated rate-of-return draws, even greater differences could obtain.

In the first case, we propose that, at the beginning of the hủi, each participant is required to report a present discounted value of the income stream from his investment, given his rate-of-return. The winner is the participant with the highest-valued report, but he only pays the highest of his opponents’ reports. How to implement this as a second-price, sealed-bid auction?
Consider the following structure: in the first round of the hüi, when a bid \(b \) is charged, denote by

\[
\hat{v}(r_n, b) = u + (N - 1)(u - b) - u \sum_{i=1}^{N-1} \frac{1}{(1 + r_n)^i} = 2u + (N - 1)(u - b) - u \sum_{i=0}^{N-1} \frac{1}{(1 + r_n)^i} = (N + 1)u - (N - 1)b - u \frac{1 - \frac{1}{(1+r_n)^N}}{r_n}
\]

the present discounted value of participant \(n \)'s investment opportunity where the discounting is done using his own rate-of-return \(r_n \). Note, too, that participant \(n \) is indifferent between winning the auction with a bid \(b_n \) and getting nothing, when \(b_n \) solves

\[
\hat{v}(r_n, b_n) = 0 = (N + 1)u - (N - 1)b_n - u \frac{1 - \frac{1}{(1+r_n)^N}}{r_n}
\]

so

\[
b_n = \frac{(N + 1) - \frac{(1+r_n)}{r_n} \left[1 - \frac{1}{(1+r_n)^N} \right]}{(N - 1)}u = \beta_{1,1}(r_n; N)u
\]

where \(\beta_{1,1}(r_n; N) \) is the unit bid function in an hüi having \(N \) rounds, when the return is \(r_n \). Under the second-price, sealed-bid format, all \(N \) participants would submit their bids \(\{b_n\}_{n=1}^{N} \). These bids would then be ordered, so

\[
b_{(1)} \geq b_{(2)} \geq \cdots \geq b_{(N)} \geq b_{(N+1)} = 0,
\]

and the hüi would then end. The winner of round \(t \) would be the participant who tendered \(b_{(t)} \), and he would pay \(b_{(t+1)} \), with the last participant’s paying the implicit
reserve price \(b_{(N+1)} \)—viz., zero.

What about holding a sequence of second-price, sealed-bid auctions, instead of holding just one in the first round? Well, one feature of the second-price auction is that, when the winner is determined in the first round, the participant with the second-highest rate-of-return, is made aware of his place in the order. How? When a participant has the second-highest rate-of-return, this information is confirmed to him because he sees his bid as the winning bid in the first round. Thus, this participant is asymmetrically informed \textit{vis-à-vis} his opponents. Even within the independent private-values paradigm, this differential information release has relevance: to wit, it is not a dominant strategy for each participant to reveal the truth.

Suppose that we shut-down this asymmetry of information. How? Let us assume that before each round of the hủi new rates-of-return are drawn independently from \(F_{R_{(r)}}^0 \) for the remaining participants. In each round of the hủi, a second-price, sealed-bid auction is conducted to determine who will win that round of the hủi, and what bid discount will be paid; only the winning bid is revealed.

In round \(t \) of an hủi, we denote the realized ordered bids, from largest to smallest, by

\[
b_{(1)} \geq b_{(2)} \geq \cdots \geq b_{(N-t+1)},
\]

and the random variables by

\[
B_{(1)} \geq B_{(2)} \geq \cdots \geq B_{(N-t+1)}.
\]

The winner is the participant with the highest bid \(b_{(1)} \), but he pays what his nearest opponent tendered \(b_{(2)} \). Prior to bidding, however, no participant knows \(B_{(2)} \), the highest bid of his opponents: \(B_{(2)} \) is a random variable.

How does a participant determine how much to bid—effectively, in which round of the hủi to exit? Again, we can couch the solution to this problem in terms of the
solution to a dynamic programme. For a representative participant, this dynamic programming problem has two state variables: t, the round of the hui, and r, the realization of his draw from the distribution of rates-of-return. We seek to construct a sequence of optimal policy (equilibrium bid) functions $\{\beta_t\}_{t=1}^N$. In round t, the optimal policy function β_t maps the rate-of-return state R into the real line. We begin by describing the problem intuitively.

In round t, the value function of participating in this round as well as all later ones can be decomposed into the expected value of winning the current round plus the expected discounted continuation value of the game, should one lose this round, so

$$V(r, t) = \max_{b} \left(\text{Expected Value of Winning, Given Bid } b \right) + \left(\text{Expected Discounted Continuation Value} \right).$$

When he wins round t of the hui, a participant earns $[tu + (N-t)(u-B_{(2)})]$, which represents the capital raised in the current period. However, he owes $-u \sum_{i=1}^{N-t} (1+r)^{-i}$, which represents the current-valued obligations of what must be repaid, discounted using the participant’s cost-of-funds, r, the rate-of-return on his potential investment. As mentioned above, $B_{(2)}$ is a random variable. Thus, it needs to be integrated out. To this end, one needs to derive the joint probability density function of the highest two order statistics from an independent and identically-distributed sample of size M, which equals $(N - t + 1)$, the number of participants in round t of the hui. Denoting the highest order statistic by Y and the second-highest one by X, the joint probability density function of X and Y is

$$f_{12}(x, y) = \begin{cases} \frac{M!}{(M-1)!(M-(M-1))!(M-M)!} \frac{\theta^0(x)}{R} \frac{(x)^{M-2} f_0(x) f_R(y)}{f_R(y)} & x < y \\ 0 & x \geq y \end{cases}$$
We construct the \(\{\beta_t\}_{t=1}^N \) as well as \(V^*(r, t) \) recursively. The solution to the bidding problem in the last round is easily found: since the reserve price in each round is zero, because he faces no competitors, the last participant need only bid zero for any rate-of-return. Thus, the optimal policy function, for all feasible \(R \), is

\[
\beta_N(r) = 0.
\]

Hence, in the last round, \(N \), for any feasible value of \(R \),

\[
V^*(r, N) = Nu.
\]

Consider now a representative participant in the second-to-last round who faces only one other opponent. Suppose the participant’s opponent is using a monotonically increasing function \(\hat{\beta}_{N-1}(r) \). The participant wins when his bid is higher than his opponent’s because his rate-of-return is higher than the sole remaining opponent. While the price he pays is random, under risk neutrality, the expected value of winning round \((N-1) \), so \(M \) is \([N - (N-1) + 1]\) or two, is

\[
\int_{\mathbb{L}} \int_{\mathbb{L}} \left((N-1)u + [u - \hat{\beta}_{N-1}(x)] - u \frac{1}{1+r} \right) 2f^0_R(x) \, dx \, f^0_R(y) \, dy.
\]

On the other hand, when he loses, the expected discounted continuation value is

\[
\int_{\mathbb{L}} \int_{\mathbb{L}} \left((b - u) + \mathbb{E} \left[\frac{Nu}{1+R} \right] \right) 2f^0_R(x) \, dx \, f^0_R(y) \, dy.
\]

The above expression warrants some explanation. In the last round of the hui, the value of the optimal programme is

\[
V^*(r, N) = Nu,
\]
so for some realization \(r\), its discounted value is

\[
V^*(r, N) = \frac{Nu}{(1+r)}.
\]

But, by assumption, new rates-of-return are drawn in each successive round for remaining participants, so its expectation is

\[
\mathbb{E}\left[\frac{Nu}{(1+R)} \right].
\]

Also, when a participant loses the second-to-last round of the hũi, his losing bid determines what he earns. Hence, the term \((b - u)\), which is his losing bid in the second-to-last round of the hũi, minus what he contributed to the hũi in that round. As we shall see below, however, this is a special feature of the second-to-last round.

Bringing all of this together yields

\[
V(r, N - 1) =
\max_{} \int_x^{\hat{\beta}_{N-1}^{-1}(b)} \int_y^y \left((N - 1)u + [u - \hat{\beta}_{N-1}(x)] - u \frac{1}{(1+r)} \right) 2f^0_R(x) \, dx \, f^0_R(y) \, dy + \
\int_{\beta_{N-1}^{-1}(b)}^{\hat{\beta}_{N-1}^{-1}(b)} \int_x^y (b - u) + \mathbb{E}\left[\frac{Nu}{(1+R)} \right] 2f^0_R(x) \, dx \, f^0_R(y) \, dy.
\]

The following first-order condition is a necessary condition for an optimum:

\[
\frac{dV(r, N - 1)}{db} =
\int_x^y \left((N - 1)u + [u - \hat{\beta}_{N-1}(x)] - u \frac{1}{(1+r)} \right) 2f^0_R(x) \, dx \, f^0_R(\hat{\beta}_{N-1}^{-1}(b)) \frac{d\hat{\beta}_{N-1}^{-1}(b)}{db} - \
\int_x^y (b - u) + \mathbb{E}\left[\frac{Nu}{(1+R)} \right] 2f^0_R(x) \, dx \, f^0_R(\hat{\beta}_{N-1}^{-1}(b)) \frac{d\hat{\beta}_{N-1}^{-1}(b)}{db} + \
\int_{\beta_{N-1}^{-1}(b)}^{\hat{\beta}_{N-1}^{-1}(b)} \int_x^y 2f^0_R(x) \, dx \, f^0_R(y) \, dy = 0.
\]
In a symmetric equilibrium, \(b = \hat{\beta}_{N-1}(r) \) and, by monotonicity, \(\frac{d\hat{\beta}_{N-1}(r)}{db} = \frac{1}{[d\hat{\beta}_{N-1}(r)/dr]} \), so the first-order condition above can be re-written as the following nonlinear differential equation:

\[
\int_{r}^{R} \left((N - 1)u + [u - \hat{\beta}_{N-1}(x)] - u \frac{1}{1 + r} \right) 2f_{R}^{0}(x) \, dx \frac{f_{R}^{0}(r)}{d\hat{\beta}_{N-1}(r)} - \int_{r}^{R} \left(\hat{\beta}_{N-1}(x) - u \right) + \mathbb{E} \left[\frac{Nu}{(1 + R)} \right] 2f_{R}^{0}(x) \, dx \frac{f_{R}^{0}(r)}{d\hat{\beta}_{N-1}(r)} + [1 - F_{R}^{0}(r)^2] = 0,
\]

or

\[
\frac{d\hat{\beta}_{N-1}(r)}{dr} = \int_{r}^{R} \left(\hat{\beta}_{N-1}(x) - u \right) + \mathbb{E} \left[\frac{Nu}{(1 + R)} \right] 2f_{R}^{0}(x) \, dx \frac{f_{R}^{0}(r)}{d\hat{\beta}_{N-1}(r)} - \int_{r}^{R} \left(Nu - \hat{\beta}_{N-1}(x) - u \frac{1}{1 + r} \right) 2f_{R}^{0}(x) \, dx \frac{f_{R}^{0}(r)}{d\hat{\beta}_{N-1}(r)} + [1 - F_{R}^{0}(r)^2].
\]

The initial condition is \(\beta_{N-1}(r) \) equal \(ru \): when a participant has the lowest possible rate-of-return, he bids the value of that rate-of-return in terms of the hũi deposit \(u \). This differential equation can only be solved numerically. Later, we assume \(r \) is zero, so the initial condition will be zero.

Like \(\sigma_{N-1}(\cdot) \), \(\beta_{N-1}(\cdot) \) is homogeneous of degree one in \(u \). For later use, we denote a bid function when \(u \) is one, a “unit” bid function, by \(\beta_{N-1,1}(\cdot) \). Also,

\[
V^{*}(r, N - 1) = \int_{r}^{R} \int_{x}^{y} \left(Nu - \beta_{N-1}(x) - u \frac{1}{1 + r} \right) 2f_{R}^{0}(x) \, dx \frac{f_{R}^{0}(y)}{d\hat{\beta}_{N-1}(r)} + \int_{r}^{R} \int_{x}^{y} \left([\beta_{N-1}(x) - u] + \mathbb{E} \left[\frac{Nu}{(1 + R)} \right] \right) 2f_{R}^{0}(x) \, dx \frac{f_{R}^{0}(y)}{d\hat{\beta}_{N-1}(r)}.
\]

which is homogeneous of degree one in \(u \), too.

Consider now round \((N - 2)\), so \(M = 3 \). In this case,

\[
V(r, N - 2) = \text{53}
\]
The above expression also warrants some explanation: specifically, the presence of \(\hat{\beta}_{N-2}(x) \) in the second integral as well as the 0.5 multiplying it, and \(b \), demand dis-
cussion. In round \((N - 1)\), this is simply \(b \) because, if a participant loses, then his
action determines what he is paid. In round \((N - 2)\), however, a losing participant’s
action only determines what he is paid with some probability. Under the sampling
scheme assumed above, the probability that one’s bid determines what one is paid is
\([1/(M - 1)]\), in this case one-half; the probability that one of the losing opponents
determines what one is paid is \([(M - 2)/(M - 1)]\, in this case also one-half. The
following first-order condition is a necessary condition for an optimum:

\[
\begin{align*}
\frac{dV(r, N - 2)}{db} &= \int_{\mathcal{L}}^{y} \left((N - 2)u + 2[u - \hat{\beta}_{N-2}(x)] - u \sum_{i=1}^{2} \frac{1}{(1 + r)^{i}} \right) \times \\
& \quad \quad 6F_{R}(x)f_{R}^{0}(x) \, dx \ f_{R}^{0}(y) \, dy + \\
& \quad \quad \int_{\mathcal{L}}^{y} \left(0.5 \times \hat{\beta}_{N-2}(x) + 0.5 \times b - u \right) + \mathbb{E} \left[\frac{V^{*}(R, N - 1)}{(1 + R)} \right] \times \\
& \quad \quad 6F_{R}(x)f_{R}^{0}(x) \, dx \ f_{R}^{0}(y) \, dy. \\
& \quad \quad 0.5 \times \int_{\mathcal{L}}^{y} \int_{\mathcal{L}}^{y} 6F_{R}(x)f_{R}^{0}(x) \, dx \ f_{R}^{0}(y) \, dy = 0.
\end{align*}
\]

In a symmetric equilibrium, \(b = \hat{\beta}_{N-2}(r) \) and, by monotonicity, \(d\hat{\beta}_{N-2}(b)/db \) equals
\(1/[d\hat{\beta}_{N-2}(r)/dr] \), so the first-order condition above can be re-written as the following
nonlinear differential equation:

\[
\int_{\xi}^{\gamma} ((N-2)u + 2[u - \hat{\beta}_{N-2}(x)] - u \sum_{i=1}^{2} \frac{1}{(1+r)^i}) \times \\
6F_0^0(x)f_R^0(x) \, dx \frac{f_R^0(r)}{d\hat{\beta}_{N-2}(r)} - \\
\int_{\xi}^{\gamma} \left([\hat{\beta}_{N-2}(x) - u] + \mathbb{E} \left[\frac{V^*(R,N-1)}{(1+R)} \right] \right) \times \\
6F_0^0(x)f_R^0(x) \, dx \frac{f_R^0(r)}{d\hat{\beta}_{N-2}(r)} + 0.5 \times [1 - F_R^0(r)^3] = 0
\]

or

\[
\frac{d\hat{\beta}_{N-2}(r)}{dr} = \\
\frac{\int_{\xi}^{\gamma} \left([\hat{\beta}_{N-2}(x) - u] + \mathbb{E} \left[\frac{V^*(R,N-1)}{(1+R)} \right] \right) 12F_0^0(x)f_R^0(x) \, dx \frac{f_R^0(r)}{[1 - F_R^0(r)^3]} - \\
\int_{\xi}^{\gamma} ((N+1)u - \hat{\beta}_{N-2}(x) - u \frac{(1+r)}{r} \left[1 - \frac{1}{(1+r)^3} \right]) 12F_0^0(x)f_R^0(x) \, dx \frac{f_R^0(r)}{[1 - F_R^0(r)^3]}
\]

Consider now any other round \(t \) where

\[
V(r,t) = \max_{} \int_{\xi}^{\gamma-t} \int_{\xi}^{\gamma} \left(tu + (N-t)[u - \hat{\beta}_{t}(x)] - u \sum_{i=1}^{N-t} \frac{1}{(1+r)^i} \right) \times \\
(N-t+1)(N-t)F_R(x)^{N-t-1}f_R^0(x) \, dx f_R^0(y) \, dy + \\
\int_{\tilde{\xi}^{-1}(b)}^{\gamma} \int_{\xi}^{\gamma} \left(\pi_t \hat{\beta}_{t}(x) + (1 - \pi_t)b - u \right) + \mathbb{E} \left[\frac{V^*(R,t+1)}{(1+R)} \right] \times \\
(N-t+1)(N-t)F_R(x)^{N-t-1}f_R^0(x) \, dx f_R^0(y) \, dy.
\]

Here, \((1 - \pi_t)\) equals \(1/(N-t)\). The following first-order condition is a necessary
condition for an optimum:

\[
\frac{dV(r,t)}{db} = \int_x^y \left(tu + (N-t)[u - \hat{\beta}_t(x)] - u \sum_{i=1}^{N-t} \frac{1}{(1+r)^i} \right) \times \\
(N - t + 1)(N - t) F_R^0(x)^{N-t-1} f_R^0(x) \ dx \ f_R^0 \left[\beta_t^{-1}(b) \right] \frac{d\beta_t^{-1}(b)}{db} - \\
\int_x^y \left[\pi_t \beta_t(x) + (1 - \pi_t)b - u \right] + \mathbb{E} \left[\frac{V^*(R,t+1)}{(1+R)} \right] \times \\
(N - t + 1)(N - t) F_R^0(x)^{N-t-1} f_R^0(x) \ dx \ f_R^0 \left[\beta_t^{-1}(b) \right] \frac{d\beta_t^{-1}(b)}{db} + \\
\int_{\beta_t^{-1}(b)}^{\beta_t^{-1}(y)} \int_x^y (1 - \pi_t)(N - t + 1)(N - t) F_R^0(x)^{N-t-1} f_R^0(x) \ dx \ f_R^0(y) \ dy = 0.
\]

In a symmetric equilibrium, \(b = \hat{\beta}_t(r) \) and, by monotonicity, \(d\hat{\beta}_t^{-1}(b)/db \) equals \(1/[d\hat{\beta}_t(r)/dr] \), so the first-order condition above can be re-written as the following nonlinear differential equation:

\[
\int_x^y \left(tu + (N-t)[u - \hat{\beta}_t(x)] - u \sum_{i=1}^{N-t} \frac{1}{(1+r)^i} \right) \times \\
(N - t + 1)(N - t) F_R^0(x)^{N-t-1} f_R^0(x) \ dx \ f_R^0(r) \ dr \left[\frac{d\beta_t(r)}{dr} \right] - \\
\int_x^y \left[\hat{\beta}_t(x) - u \right] + \mathbb{E} \left[\frac{V^*(R,t+1)}{(1+R)} \right] \times \\
(N - t + 1)(N - t) F_R^0(x)^{N-t-1} f_R^0(x) \ dx \ f_R^0(r) \ dr \left[\frac{d\beta_t(r)}{dr} \right] + (1 - \pi_t)[1 - F_R^0(r)^{N-t}] = 0
\]

or

\[
\frac{d\hat{\beta}_t(r)}{dr} = \\
\int_x^y \left(\pi_t \beta_t(x) + (1 - \pi_t)b - u \right) + \mathbb{E} \left[\frac{V^*(R,N-1)}{(1+R)} \right] \times \\
(N - t + 1)(N - t)^2 F_R^0(x)^{N-t-1} f_R^0(x) \ dx \ f_R^0(r) \ dr \left[\frac{[1 - F_R^0(r)^{N-t+1}]}{[1 - F_R^0(r)^{N-t+1}]} \right] - \\
\int_x^y \left((N + 1)u - \hat{\beta}_{N-2}(x) - \frac{u(1+r)}{r} \left[1 - \frac{1}{(1+r)^{N-t+1}} \right] \right) \times \\
(N - t + 1)(N - t)^2 F_R^0(x)^{N-t-1} f_R^0(x) \ dx \ f_R^0(r) \ dr \left[\frac{[1 - F_R^0(r)^{N-t+1}]}{[1 - F_R^0(r)^{N-t+1}]} \right].
\]
Table 3: Net Cash Flow: Tanda (Lottery) Version of Hui used in Mexico

<table>
<thead>
<tr>
<th>Bidder/Round</th>
<th>Banker</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1,200</td>
<td>−$300</td>
<td>−$300</td>
<td>−$300</td>
<td>−$300</td>
<td>$0</td>
</tr>
<tr>
<td>1</td>
<td>−300</td>
<td>1,200</td>
<td>−$300</td>
<td>−300</td>
<td>−300</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>−300</td>
<td>−300</td>
<td>1,200</td>
<td>−300</td>
<td>−300</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>−300</td>
<td>−300</td>
<td>−300</td>
<td>1,200</td>
<td>−300</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>−300</td>
<td>−300</td>
<td>−300</td>
<td>−300</td>
<td>1,200</td>
<td>0</td>
</tr>
</tbody>
</table>

While the differential equations derived above are nonlinear, first-order differential equations, they can be written as linear, second-order differential equations.

Another alternative is not to hold an auction at all, but rather to hold a lottery in each round of the hui. In fact, this is how the hui is conducted in some parts of Mexico, where it is apparently referred to as the *tanda*. In Mexico, under the rules of the *tanda*, each participant deposits *u* with the banker at the beginning. The winner in the first round, and each subsequent round, is chosen at random from the pool of remaining participants. In this case, following the example from table 1 of the introduction, the cash payouts are summarized in table 3.

How to value this institution? Well, one way would be to calculate the expected value of each round, under random sampling, as well as the average value of the *tanda* using $f_R^0(r)$, and then to compare this with the average value of the other two institutions.

In general, there are *N* potential pay-out streams which, when valued by a random participant’s rate-of-return *r*, have the following present discounted value:

$$P_1(r) = -u + Nu - \frac{u}{(1+r)} - \frac{u}{(1+r)^2} - \cdots - \frac{u}{(1+r)^{N-1}}$$

$$P_2(r) = -u - u + \frac{Nu}{(1+r)} - \frac{u}{(1+r)^2} - \cdots - \frac{u}{(1+r)^{N-1}}$$

$$\vdots$$

$$P_{N-1}(r) = -u - u - \frac{u}{(1+r)} - \cdots + \frac{Nu}{(1+r)^{N-2}} - \frac{u}{(1+r)^{N-1}}$$
\[P_N(r) = -u - u - \frac{u}{(1 + r)} - \cdots - \frac{u}{(1 + r)^{N-2}} + \frac{Nu}{(1 + r)^{N-1}}. \]

Now,
\[\mathbb{E}[P_t(R)] = \int_{-\infty}^{\infty} P_t(r) f^0_R(r) \, dr. \]

Because the lottery assigns participants at random to these investment streams, the average value to investments allocate under the \textit{tanda} rule is
\[\frac{1}{N} \sum_{t=1}^{N} \mathbb{E}[P_t(R)]. \]

Depending on the informational assumption, we can compare this to
\[\frac{1}{N} \sum_{t=1}^{N} \mathbb{E}\{P_t[R_{(t;N)}]\} \]
and
\[\frac{1}{N} \sum_{t=1}^{N} \mathbb{E}\{P_t[R_{(1;N-t)}]\} \]
to get some notion concerning how much is gained by ordering the investments optimally by rate-of-return.

7 Summary and Conclusions

Using the theory of non-cooperative games under incomplete information, we have analyzed the hủi—a borrowing and lending institution used by Vietnamese immigrants in Australia and New Zealand, in particular, but in other parts of the world as well. Essentially, the hủi is a sequential, double auction among the participants in a collective. Within the symmetric independent private-values paradigm, we constructed the Bayes–Nash equilibrium of a sequential, first-price, sealed-bid auction game and then investigated the properties of the equilibrium using numerical meth-
ods. We also demonstrated that this model is non-parametrically identified, at least in the second-to-round of the hủi. Subsequently, we used this structure to interpret field data gathered from a sample of hủi held in Melbourne, Australia during the early 2000s. We also investigated two simple policy experiments—one involving a shift to a second-price, sealed-bid format and the other a shift to a lottery, which is how a mechanism like the hủi is implemented in Mexico. Under the second-price, sealed-bid format we constructed the Bayes–Nash equilibrium and demonstrated that, unlike the first-price model, this model is non-parametrically unidentified, even in the second-to-round of the hủi. Unlike in single-object auctions within the IPVP, pay-off equivalence does not exist under either of our independent private-values assumptions. While it is obvious that the hủi will do much better in allocating capital efficiently than the random allocation under the tanda, our estimates provide some notion of the efficiency gain from using the hủi.

As an economic institution, the hủi obviously facilitates inter-temporal smoothing, and appears implementable under primitive market conditions, such as those present in developing countries. Presumably, the structure of the hủi accommodates an informational asymmetry that conventional banks cannot.

The hủi is one way in which an overlapping generations model can be implemented in practice. By and large, there are two kinds of immigrants participating in the hủi: first, young immigrants who have difficulty raising capital through conventional financial institutions, probably because they do not have credit histories long enough to make them credit worthy; second, older immigrants who, for various reasons, may not trust depositing their savings at conventional financial institutions.
Acknowledgements

For useful comments and helpful suggestions, the authors thank Mabel Andalon and Denis Nekipelov, but especially Srihari Govindan and Robert B. Wilson.

Appendix

In this appendix, we present calculations too cumbersome for inclusion in the text of the paper as well as describe the creation of the data set used.

A.1 Borrowers and Lenders

In this section of the appendix, we expand the model to admit two types of participants in the huî, those whom we refer to as borrowers, and those whom we refer to as lenders. For notational parsimony, we refer to the value of the huî in a representative round \(t \) to a participant as \(v \), instead of writing out

\[
(N + 1)u - \frac{(1 + r)}{r} \left[1 - \frac{1}{(1 + r)^{N-t+1}} \right] u - \mathbb{E} \left[\frac{V^*(R, t + 1)}{(1 + R)} \right].
\]

We imagine two different urns from which rates-of-return are drawn. Intuitively, the borrowers have a distribution of rates-of-returns which is everywhere to the right of the distribution of that for the lenders. However, in any round, it is possible that a borrower gets a draw that is below that of some of the lenders: such is the nature of random draws. Below, we are going to represent the unobserved rate-of-return heterogeneity as heterogeneity in values. Without loss of generality, we assume that the borrowers are type 1, while the lenders are type 2.

Thus, consider two urns \(F_1(v) \) and \(F_2(v) \). Suppose there are \(K \) potential opponents, of which an unknown \(K_1 \) are potential borrowers, while \(K_2 \) are potential lenders where \((K_1 + K_2) = K\), where in the models considered above \(K \) is \((N - t)\). Sup-
pose the number of type 1 opponents is distributed binomially, having the following

probability mass function:

\[p_M(m; K, \alpha) = \binom{K}{m} \alpha^m (1 - \alpha)^{K-m}, \quad 0 < \alpha \leq 1, \quad m = 0, 1, 2, \ldots, K. \]

Now, expected profit to a type \(i = 1, 2 \) bidder having value \(v \) who submits \(s_i \) is

\[\pi_i(v, s_i) = (v - s_i) \Pr(\text{win}|s_i). \]

Suppose a potential bidder of type \(i = 1, 2 \) bids is using an increasing monotonic

function \(\hat{\sigma}_i(v) \) where \(\hat{\sigma}_i'(v) > 0 \). Conditional on \(m \),

\[\Pr(\text{win}|s_1, m) = F_1 \left[\hat{\sigma}^{-1}_1(s_1) \right]^m F_2 \left[\hat{\sigma}^{-1}_2(s_1) \right]^{K-m} \]

and

\[\Pr(\text{win}|s_2, m) = F_1 \left[\hat{\sigma}^{-1}_1(s_2) \right]^m F_2 \left[\hat{\sigma}^{-1}_2(s_2) \right]^{K-m}, \]

while

\[
\sum_{m=0}^{K} \Pr(\text{win}|s_1, m)p_M(m; K, \alpha) = \\
K \sum_{m=0}^{K} F_1 \left[\hat{\sigma}^{-1}_1(s_1) \right]^m F_2 \left[\hat{\sigma}^{-1}_2(s_1) \right]^{K-m} \binom{K}{m} \alpha^m (1 - \alpha)^{K-m} = \\
\left(\alpha F_1 \left[\hat{\sigma}^{-1}_1(s_1) \right] + (1 - \alpha) F_2 \left[\hat{\sigma}^{-1}_2(s_1) \right] \right)^K
\]

and

\[
\sum_{m=0}^{K} \Pr(\text{win}|s_2, m)p_M(m; K, \alpha) = \\
K \sum_{m=0}^{K} F_1 \left[\hat{\sigma}^{-1}_1(s_2) \right]^m F_2 \left[\hat{\sigma}^{-1}_2(s_2) \right]^{K-m} \binom{K}{m} \alpha^m (1 - \alpha)^{K-m} = \\
\left(\alpha F_1 \left[\hat{\sigma}^{-1}_1(s_2) \right] + (1 - \alpha) F_2 \left[\hat{\sigma}^{-1}_2(s_2) \right] \right)^K
\]
\[
\left(\alpha F_1 \left[\hat{\sigma}_1^{-1}(s_2)\right] + (1 - \alpha) F_2 \left[\hat{\sigma}_2^{-1}(s_2)\right]\right)^K,
\]

so

\[
\pi_i(v, s_i) = (v - s_i) \left(\alpha F_1 \left[\hat{\sigma}_1^{-1}(s_i)\right] + (1 - \alpha) F_2 \left[\hat{\sigma}_2^{-1}(s_i)\right]\right)^K.
\]

Now,

\[
\frac{d\pi_i(v, s_i)}{ds_i} = -\left(\cdot\right)^K + (v - s_i) \left[K \left(\cdot\right)^{K-1} \frac{d\left(\cdot\right)}{ds_i} \right]
\]

\[
= -\left(\cdot\right)^K +
\]

\[
(v - s_i) K \left(\cdot\right)^{K-1} \left[\alpha f_1(\cdot) \frac{d\hat{\sigma}_1^{-1}(\cdot)}{ds_i} + (1 - \alpha) f_2(\cdot) \frac{d\hat{\sigma}_2^{-1}(\cdot)}{ds_i} \right]
\]

\[
= 0,
\]

so, at an equilibrium,

\[
1 = \left\{ \frac{K \left[\alpha f_1(v)\sigma_1' (v) + (1 - \alpha) f_2(v)\sigma_2' (v) \right]}{[\alpha F_1(v) + (1 - \alpha) F_2(v)]} \right\} [v - \sigma_i(v)]
\]

\[
\sigma_1'(v)\sigma_2'(v) = \left\{ \frac{K \left[\alpha f_1(v)\sigma_2' (v) + (1 - \alpha) f_2(v)\sigma_1' (v) \right]}{[\alpha F_1(v) + (1 - \alpha) F_2(v)]} \right\} [v - \sigma_i(v)]
\]

Thus,

\[
\left\{ \frac{K \left[\alpha f_1(v)\sigma_2' (v) + (1 - \alpha) f_2(v)\sigma_1' (v) \right]}{[\alpha F_1(v) + (1 - \alpha) F_2(v)]} \right\} [v - \sigma_1(v)] =
\]

\[
\left\{ \frac{K \left[\alpha f_1(v)\sigma_1' (v) + (1 - \alpha) f_2(v)\sigma_2' (v) \right]}{[\alpha F_1(v) + (1 - \alpha) F_2(v)]} \right\} [v - \sigma_2(v)].
\]

In short,

\[
\sigma_1(v) = \sigma_2(v)
\]

which, we shall denote \(\sigma_1(\cdot)\), for the first round.
The thing is that α evolves across rounds. Suppose that α is initially α_1. When a bidder wins the auction, there is one less potential buyer of type i, depending on who won, a type 1 or a type 2. If it is a type 1 bidder who won, then

$$\alpha_{2|1} = \alpha_1 - \frac{1}{K},$$

while if it is a type 2 bidder who won, then

$$\alpha_{2|2} = \alpha_1 + \frac{1}{K}.$$

What is the probability of either of these events? Well, when a winning bid w_1 is observed in round 1, then the relative likelihood of these events is determined by

$$\gamma_2(w_1) = \sum_{m=0}^{K} \left(\frac{F_1 \left[\sigma_1^{-1}(w_1) \right]^m}{F_1 \left[\sigma_1^{-1}(w_1) \right]^m + F_2 \left[\sigma_1^{-1}(w_1) \right]^{K-m}} \right) p_M(m; K, \alpha_1),$$

so

$$\alpha_2(w_1) = \alpha_{2|1} \gamma_2(w_1) + \alpha_{2|2} \left[1 - \gamma_2(w_1) \right]$$

$$= \left(\alpha_1 - \frac{1}{K} \right) \gamma_2(w_1) + \left(\alpha_1 + \frac{1}{K} \right) \left[1 - \gamma_2(w_1) \right].$$

Similarly, after a winning bid w_2 is observed in the second round, then

$$\alpha_{3|1}(w_1) = \alpha_2(w_1) - \frac{1}{(K-1)},$$

while if it is a type 2 bidder who won, then

$$\alpha_{3|2}(w_1) = \alpha_2(w_1) + \frac{1}{(K-1)}.$$
What is the probability of either of these events? Now, the relative likelihood of these events is determined by

$$\gamma_3(w_1, w_2) = \sum_{m=0}^{K-1} \left(\frac{F_1 \left[\sigma_2^{-1}(w_2) \right]_m}{F_1 \left[\sigma_2^{-1}(w_2) \right]_m + F_2 \left[\sigma_2^{-1}(w_2) \right]_m^{K-m}} \right) p_M(m; K - 1, \alpha_2),$$

so

$$\alpha_3(w_1, w_2) = \alpha_{3|1}(w_1) \gamma_3(w_2) + \alpha_{3|2}(w_1) \left[1 - \gamma_3(w_2) \right].$$

In general, in round t, having observed winning bids $(w_1, w_2, \ldots, w_{t-1})$ in the previous $(t-1)$ rounds,

$$\alpha_{t|1}(w_1, w_2, \ldots, w_{t-2}) = \alpha_{t-1}(w_1, w_2, \ldots, w_{t-2}) - \frac{1}{(K - t + 2)},$$

while if it is a type 2 bidder who won, then

$$\alpha_{t|2}(w_1, w_2, \ldots, w_{t-2}) = \alpha_{t-1}(w_1, w_2, \ldots, w_{t-2}) + \frac{1}{(K - t + 2)},$$

where the probability of either of these events is determined by

$$\gamma_t(w_1, w_2, \ldots, w_{t-1}) = \sum_{m=0}^{K-t+2} \left(\frac{F_1 \left[\sigma_{t-1}^{-1}(w_{t-1}) \right]_m}{F_1 \left[\sigma_{t-1}^{-1}(w_{t-1}) \right]_m + F_2 \left[\sigma_{t-1}^{-1}(w_{t-1}) \right]_m^{K-t+2-m}} \right) p_M(m; K - t + 2, \alpha_{t-1}),$$

so

$$\alpha_t(w_1, w_2, \ldots, w_{t-1}) = \alpha_{t|1}(w_1, w_2, \ldots, w_{t-2}) \gamma_t(w_1, w_2, \ldots, w_{t-1}) + \ldots.$$
$$\alpha_{t2}(w_1, w_2, \ldots, w_{t-2}) \{1 - \gamma_t(w_1, w_2, \ldots, w_{t-1})\}.$$

A.2 Second-Price, Sealed-Bid ヒイ is Non-Parametrically Unidentified

We assume that before each round of the ヒイ new rates-of-return are drawn independently from $F^0_R(r)$ for the remaining participants. In each round of the ヒイ, a second-price, sealed-bid auction is conducted to determine who will win that round of the ヒイ, and what bid discount will be paid; only the winning bid is revealed.

For a first-price, sealed-bid ヒイ, we established non-parametric identification in the second-to-last round. That is where we shall begin here, too: if we cannot establish non-parametric identification in the second-to-last round, then such identification cannot be established in earlier rounds either because (through backward induction) behaviour in those rounds conditions on that in the second-to-last round.

Consider a representative participant in the second-to-last round who faces only one other opponent. In a symmetric Bayes–Nash equilibrium, when u is one, the first-order condition for expected discounted-value maximization can be re-written as the following differential equation:

$$\int_{\mathbb{R}} \left((N-1) + [1 - \beta_{N-1,1}(x)] - \frac{1}{(1+r)} \right) 2f_R^0(x) \, dx \frac{f_R^0(r)}{d\beta_{N-1,1}(r)} - \int_{\mathbb{R}} \left[\beta_{N-1,1}(x) - 1 \right] \mathbb{E} \left[\frac{N}{(1+R)} \right] 2f_R^0(x) \, dx \frac{f_R^0(r)}{d\beta_{N-1,1}(r)} + \left[1 - F^0_R(r)^2 \right] = 0.$$

Denote by $G_{B,1}^{N-1}(b)$ the population cumulative distribution function of unit bids observed in the second-to-last round, and by $g_{B,1}^{N-1}(b)$ the corresponding population
probability density function. Now,

$$G_{B,1}^{N-1}(b) = \Pr(B \leq b) = \Pr[\beta_{N-1,1}^{-1}(B) \leq \beta_{N-1,1}^{-1}(b)] = \Pr(R \leq r) = F^0_R(r).$$

Also,

$$g_{B,1}^{N-1}(b) \, db = f^0_R(r) \, dr$$

$$g_{B,1}^{N-1}(b) = f^0_R(r) \, \frac{dr}{db}$$

$$g_{B,1}^{N-1}(b) = \frac{f^0_R(r)}{\beta_{N-1,1}'(r)}$$

$$g_{B,1}^{N-1}(b) = \frac{f^0_R[\beta_{N-1,1}(b)]}{\beta_{N-1,1}'[\beta_{N-1,1}(b)]}.$$

Thus,

$$\int_{\xi}^r \left((N - 1) + [1 - \beta_{N-1,1}(x)] - \frac{1}{(1 + r)} \right) 2f^0_R(x) \, dx \, g_{B,1}^{N-1}(b) -$$

$$\int_{\xi}^r \left([\beta_{N-1,1}(x) - 1] + \mathbb{E} \left[\frac{N}{1 + R} \right] \right) 2f^0_R(x) \, dx \, g_{B,1}^{N-1}(b) + [1 - G_{N-1,1}^{N-1}(b)^2] = 0,$$

which can be re-written in terms of observables on the left-hand side as

$$\frac{[1 - G_{N-1,1}^{N-1}(b)^2]}{g_{B,1}^{N-1}(b)} = \int_{\xi}^r \left(2\beta_{N-1,1}(x) + \mathbb{E} \left[\frac{N}{1 + R} \right] + \frac{1}{(1 + r)} - (N + 1) \right) 2f^0_R(x) \, dx$$

$$= \left(\frac{1}{(1 + r)} + \mathbb{E} \left[\frac{N}{1 + R} \right] - (N + 1) \right) 2F^0_R(r) + \int_{\xi}^r 4\beta_{N-1,1}(x) \, f^0_R(x) \, dx.$$

Now, if we are willing to change the timing of discounting, as we did in the first-price, sealed-bid case, then this gives rise to

$$\frac{[1 - G_{N-1,1}^{N-1}(b)^2]}{g_{B,1}^{N-1}(b)} = \left[\frac{1}{(1 + r)} + \frac{N}{(1 + r)} - (N + 1) \right] 2F^0_R(r) + \int_{\xi}^r 4\beta_{N-1,1}(x) \, f^0_R(x) \, dx$$

66
\[
= \left[\frac{r(N + 1)}{1 + r} \right] 2^{{N-1}} \beta_{N-1}(b) + \int_{L}^{R} 4\beta_{N-1,1}(x) f_{R}(x) \, dx.
\]

Were the integral on the right-hand-side not there, then we could establish non-parametric identification in the second-price, sealed-bid hũi. Unfortunately, the integral is there. In short, its presence implies that the second-price, sealed-bid hũi is non-parametrically unidentified.

References

Ping Sing Kuo. Defaults, bidding, and participation in the rotating credit association: An equilibrium analysis, typescript, Department of Economics, National Dong-Hwa University, Shou-Feng, Hualien, Taiwan, 2002.

