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Abstract

This paper describes nagging, a technique for parallelizing search in a heterogeneous distributed
computing environment. Nagging exploits the speedup anomaly often observed when parallelizing
problems by playing multiple reformulations of the problem or portions of the problem against each other.
Nagging is both fault tolerant and robust to long message latencies. In this paper, we show how nagging
can be used to parallelize several different algorithms drawn from the artificial intelligence literature, and
describe how nagging can be combined with partitioning, the more traditional search parallelization
strategy. We present a theoretical analysis of the advantage of nagging with respect to partitioning, and
give empirical results obtained on a cluster of 64 processors that demonstrate nagging’s effectiveness and
scalability as applied to A* search, α β minimax game tree search, and the Davis-Putnam algorithm.

1. Introduction

Many artificial intelligence problems of practical interest can be posed in terms of search. Not

surprisingly, the development of a robust network infrastructure coupled with the advent of reasonably-

priced computing equipment has helped focus attention on techniques that use multiple processors

operating in parallel to improve search performance. Some of this work has centered on developing

application-level toolkits to access a distributed computing environment as well as resource-management

tools that enable an application to exploit computing resources that span organizational boundaries (e.g.,

‘‘grid computing’’) [Beguelin94, Foster97, Gropp96, Litzkow88].
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Aside from differences in enabling technology, most attempts to parallelize search are quite similar,

involving some sort of partitioning [Grama95, Grama99]. The general idea is that each processing

element takes responsibility for a portion of the search space, and that the individual solutions to these

subproblems can then be compared or composed to obtain a solution to the original problem. Different

partitioning schemes usually differ in their target computer architecture (e.g., SIMD vs. MIMD, shared

memory multiprocessors vs. networks of workstations, etc.) and how they address a number of technical

problems, such as load balancing (how best to assign work in order to exploit all available processors all

of the time) and fault tolerance (how to notice and recover from the momentary inaccessibility or outright

loss of one or more processing elements). Nevertheless, partitioning is the basis of a diverse set of

projects, including SETI@Home, the search for radio signal evidence of extraterrestrial life, GIMPS, the

search for Mersenne prime numbers, and various code breaking efforts from distributed.net.

Unfortunately, many problems do not partition well. One reason is that information acquired early in

a serial search process can often be used to reduce the amount of search performed overall: for example,

consider how the α and β values are used to prune the game tree in α β minimax search. If the search is

partitioned, the information acquired while searching one subspace may come too late to help reduce the

search in another subspace explored simultaneously, resulting in a search that may actually be slower with

multiple processors than it is with a single processor.1 This problem is an instance of the more general

speedup anomaly problem, first studied for branch-and-bound style algorithms on two well-known NP-

hard problems in [Lai84]. A speedup anomaly occurs when a solution is obtained more slowly with more

1 Even if the information were made available in a timely fashion, sharing the information among multiple pro-
cessors would entail some amount of communication overhead. In general, the cost of communication tends to in-
crease as the number of processors increases. Depending on the underlying architecture, sharing information may
involve interprocessor communication or the use of shared memory. For shared-memory multiprocessors, there are
practical design limits on the number of processors one can incorporate in a single machine. For more loosely-cou-
pled processors, interprocessor communication (either in directed or broadcast form) requires overhead for generat-
ing and servicing messages; furthermore, as the number of processors increases, higher message latencies associated
with larger networks generally entail larger communication overheads.
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processors than it is with fewer processors, or, alternatively, when a solution is obtained superlinearly

faster with multiple processors. Later, such superlinear speedups were routinely studied, particularly

within the parallel logic programming and theorem proving communities (see, e.g., [Ertel92]).

This paper describes a distributed search paradigm called nagging that exploits the speedup anomaly

often observed when parallelizing problems by playing multiple reformulations of the problem or portions

of the problem against each other. Nagging has several advantages over partitioning techniques; it is

intrinsically fault tolerant, naturally load-balancing, requires relatively brief and infrequent interprocessor

communication, and is robust in the presence of reasonably large message latencies. These properties help

make nagging suitable for use on geographically-distributed networks of processing elements. Originally

developed in the course of our work on distributed automated deduction [Segre94, Sturgill97, Sturgill94],

we show here how nagging can be generalized and applied to a broad range of search algorithms from the

artificial intelligence literature. We dev elop an analytical performance model comparing nagging and

partitioning, and use this model to make some predictions about their respective performance. Finally,

our performance claims are justified via an empirical evaluation of nagging and partitioning on three well-

known yet significantly different search algorithms; A* search [Lawler66], α β minimax game tree search

[Newell58], and the Davis-Putnam search algorithm [Davis62].

2. Nagging and Search

Nagging is an asynchronous parallel search pruning technique where a single master processor (or

master), performing some standard search procedure, is advised by one or more nagging processors (or

naggers), each performing identical search procedures, about portions of its master’s search space that

need not be explored.

Let us consider a search procedure that is designed to find a globally-optimal solution in a finite,

implicitly-defined, search space; this is the case, for example, when trying to determine the best next
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move to make in game tree search with fixed horizon (similar arguments hold for situations where any

legal solution suffices, such as for theorem proving or satisfiability problems). At initialization, each

nagger obtains the problem specification from its master processor. It then engages in a series of nagging

episodes, each initiated by the nagger when it becomes idle, until the master has completed its search.

Reconstructed
Search
Space

Transformed
Search
Space

Nagpoint

Transformation
Function

Problem

Master’s Search Space Nagger’s Search Space

a c d b′ a′d ′c′b

Figure 1: Nagging episode. The square node indicates the current position of the master process, which is
executing a depth-first search. A nagpoint is selected along the master’s search path, and is described to
the nagging process by communicating the series of choices from the root of the search tree to the nag-
point. The nagger reconstructs the master’s search space up to the nagpoint and then commences explor-
ing its own, transformed, version of the space rooted at the nagpoint.
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A nagging episode begins when the nagger requests a snapshot of its master’s current state, which is

concisely described by communicating the sequence of choices made through the predefined search space

(see Figure 1). The master selects a nagpoint (a node along its own current path from which the nagger

will begin its own exploration of the space) according to some predefined nagpoint selection criteria; it

then communicates this nagpoint and the value describing its own current best solution to the nagger.

The master and the nagger now race to exhaust their respective search spaces; while the two search

spaces are semantically equivalent, they may well be searched differently, leading to different expected

solution times. If we are searching for an optimal solution, there are only three possible outcomes to

consider:

(1) Abort: If the master backtracks over the nagpoint before the nagger completes its own search, the
master signals the nagger to abort the nagging episode, which causes the nagger to once again
become idle and initiate a new nagging episode.

(2) Prune: If the nagger completes its search and finds there are no better solutions than that already
known by the master, then the nagger interrupts the master and forces it to backtrack to the
nagpoint, resulting in a reduction in the master’s search space.

(3) Solve: Finally, should the nagger find a better solution than that communicated by the master, it
can abort its own current search and report the new value to the master so that the master might
use this new value to reduce its own search space.

Of course, for nagging to have the greatest possible positive effect on the master’s search efficiency, we

would prefer the second and third cases occur with high probability, and we hope the first case occurs

only rarely. Should the second and third cases never occur, we can expect no improvement in the master’s

expected time to solution: indeed, the master’s search will surely be less efficient due to the small — but

measurable — additional overhead of servicing its naggers.

Tw o techniques are applied to improve the odds. First, a nagger can be nagged recursively by yet

another processor in order to help it exhaust its own search space more quickly. Second, and more

importantly, each nagger may apply a problem transformation function to reduce, in practice, the size of

its search space while retaining at least some of the information content implicit therein (note that

effective problem transformation functions are typically dependent on both the search algorithm in use
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and the problem domain itself). We will discuss both of these techniques later in this paper.

The main characteristics of nagging are clear even within this simplified context. First, nagging does

not require explicit load balancing, since idle machines always initiate nagging episodes to keep

themselves busy. As long as the master processor is still searching, new nagpoints can be provided at will.

Second, nagging is intrinsically fault tolerant: since the master’s search is unaffected should a nagger fail

or become inaccessible, losing a nagger will never compromise the correctness or quality of the solution

produced by the master, nor will the master ever stop and wait for the missing nagger. Finally,

communication is brief, since even deep search states can be described concisely as a sequence of

choices, while the results reported by a nagger often reduce to a single bit (e.g., prune/don’t prune) or just

a few bits (e.g., a new value for the best solution to date).

3. NICE: A Network Infrastructure for Combinatorial Exploration

To support our work on nagging, we have dev eloped NICE, the Network Infrastructure for

Combinatorial Exploration. NICE is specifically designed to support both nagging and partitioning for

search algorithms; it allows application programmers to parallelize their search procedures by making

appropriate function calls within their code. The NICE distribution includes niced, a  Unix resource

management daemon, niceq, a daemon status query program, and niceapi, the applications programmer’s

interface library. The code is written in ANSI C with BSD sockets over TCP/IP, and is known to run on

multiple variants of the Unix operating system, including Linux, Sun OS, and HPUX.

The NICE daemon, or niced, must be running on every participating machine, whether master or

nagger. Typically, it is started automatically as part of the system boot process, and runs as long as its

host CPU is running (the daemon itself is single threaded and extremely lightweight, having no noticeable

impact on system performance). NICE daemons are arranged hierarchically, with each daemon reporting

to a single parent daemon while answering to zero or more child daemons. The NICE daemon fulfills
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three primary functions:

(1) The daemon maintains contact with the NICE hierarchy, occasionally exchanging host load and
availability information with its parent and child daemons, and managing failure recovery should
its parent and/or child daemons become unreachable or unresponsive. Each daemon may also
initiate local reorganization of the NICE hierarchy in a greedy attempt to enhance overall search
performance according to each host’s current actual load.

(2) The daemon provides the interface through which a qualifying application may request additional
processors. It is also responsible for security, certifying which applications on which hosts are
allowed to request support from other processors, which executables can be run on the local host,
as well as which files, if any, can be accessed locally.

(3) The daemon manages the local host’s resources according to prespecified host-specific
constraints: for example, some hosts may be available only during specified times, such as during
nighttime hours. Thus the daemon must decide when a processor can respond to requests for new
processes, and must also manage previously spawned but still running processes, putting them to
sleep and later waking them when the host becomes available once more.

A NICE-enabled application communicates with the NICE infrastructure via a set of callable

functions contained in the NICE applications programmer’s interface. This linkable library contains

functions that, when invoked, request new copies of the application be spawned on other machines. It also

contains functions to support communication between applications and between the application and the

NICE daemon. Note that the library does not actually contain code for the search algorithms, but rather

only the handful of functions that are needed to parallelize — via either nagging or partitioning —

appropriately designed serial search algorithms.

Both the NICE daemon and NICE API represent fairly mature software efforts: versions of the

NICE daemon have been running continuously on our systems for several years, with no noticeable

impact on performance. The code is very robust, with NICE daemons running reliably and unobtrusively

for periods of many months between system restarts. But more to the point, while the NICE infrastructure

represents a necessary enabling technology that directly supports research in distributed search algorithms

without the additional features provided in more general toolkits such as PVM [Beguelin94] or MPI

[Gropp96], the more interesting parallelization issues are algorithmic ones. What is perhaps most

remarkable about NICE is that such a simple and lightweight infrastructure naturally supports

parallelization of a broad array of search algorithms.
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4. Applications of Nagging

While, as we have seen in Section 2, the main idea that underlies nagging is quite simple, there are a

number of important details (e.g., the design of appropriate problem transformation functions) that have a

direct effect on how well nagging works. These issues are best discussed in the context of specific search

algorithms: here, we show how three well-known search algorithms drawn from the artificial intelligence

literature — the Davis-Putnam algorithm, the A* search algorithm, and the α β minimax search algorithm

— can be parallelized using nagging.

4.1. The Davis-Putnam Algorithm

First proposed by Davis and Putnam, and later refined by Loveland, the Davis-Putnam algorithm is

the fastest known solution technique for Boolean satisfiability problems that is both sound and complete.2

We say it is complete because if there is a solution, the Davis-Putnam algorithm guarantees that that

solution will eventually be found. Other fast solution methods for satisfiability problems such as GSAT,

WSAT or simulated annealing are local search procedures that are sound, but not complete [Selman92].

Note that completeness does not necessarily imply an exhaustive search; rather, if the given problem is

satisfiable, any solution is equally correct, so we can terminate the search as soon as any solution is found.

The search space must only be searched exhaustively when we need to guarantee an unsatisfiable problem

has no solution. This kind of search-until-first-solution behavior arises most often in automated deduction

or theorem proving environments; precisely the contexts where nagging was first proposed.

2 Recall a Boolean variable is a variable that can only be true or false. A Boolean formula consists of variables
related via the usual logical connectors ¬, ∧ , ∨ , → and ↔ ; a formula is in conjunctive normal form (CNF) if it is
a conjunction of clauses, where each clause is a disjunction of literals, and each literal is a Boolean variable or its
negation. By definition, the SAT-CNF problem (determining whether or not a given CNF Boolean formula is satisfi-
able) is NP-complete; that is, it is possible to certify a solution is correct in polynomial time, but it is commonly be-
lieved that actually finding a solution requires exponential time [Cook71].
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The Davis-Putnam algorithm solves a particular type of Boolean satisfiability problem, usually

called SAT-3-CNF or simply 3SAT, that deals only with Boolean formulas having at most three literals

per clause (note that any Boolean formula that can be expressed in CNF can also be expressed in 3CNF

by direct manipulation along with the addition of some number of new Boolean variables) [Gu97]. The

general idea is simple; if there are a total of N variables, then one can systematically examine all 2N

possible combinations of truth assignments in order to determine if at least one of these truth assignments

satisfies the formula.

Tw o observations serve to reduce the number of variable combinations the Davis-Putnam algorithm

need look at in practice. First, if a partial solution having m variable bindings is inconsistent (that is, fails

to satisfy one of the clauses), then all 2(N−m) completions of this partial solution must also be inconsistent

and can be safely pruned: there can exist no solution in this portion of the search space. Second, if a

partial solution contains the negations of any k − 1 literals from a given k-literal clause, then, if there is to

be any hope of finding a satisficing solution, the lone remaining literal in the clause must be satisfied by

binding its variable appropriately. Of course, once bound, the newly bound variable may force other

variable bindings as well, thus effectively reducing the search space: this process is called unit

propagation. Thus the Davis-Putnam algorithm operates by systematically examining combinations of

truth assignments, with periods of unit propagation occurring whenever possible (see Figure 2).

What is the expected solution time for this algorithm? In principal, larger formulae define a larger

search space and therefore entail longer solution times. In practice, however, exactly how much time is

required depends on more subtle characteristics of the specific problem instance (e.g., ratio of number of

variables to number of clauses as well as the distribution of variables within the clauses themselves). Put

simply, not all like-sized 3SAT problems are equally hard [Mitchell92, Zhang99]. Some problem

instances can be easy (imagine, for example, a Boolean formula in CNF where every clause shares a

single literal), while others of exactly the same size may result in exponential-time performance. In
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3sat ( F : formula ) : boolean ;
return ( search ( F , extractVars ( F ) )  ;

search ( F : formula , S : variables ) : boolean ;
V : variable←head ( S ) ;
C : clause ;

if ( F = ∅ ) then return ( true ) ;
elseif ( ∃ C ∈ F size (C ) = 0 ) then return ( false ) ;
elseif ( ∀ C ∈ F V ∈/ C ∧ ¬V ∈/ C ) then return ( search ( F , S \ {V } ) )  ;
elseif ( search ( propagate ( substitute ( F , V ) )  , S \ {V } ) ) then return ( true ) ;
elseif ( search ( propagate ( substitute ( F , ¬V ) )  , S \ {V } ) ) then return ( true ) ;
else return ( false ) ;

substitute ( F : formula , V : variable ) : formula
G : formula←∅ ;
C : clause ;

for C in F
if (V ∈/ C )

G ←G∪(C \ { ¬V } ) ;
return ( G ) ;

propagate ( F : formula ) : formula
C : clause ;

while ( ∃ C ∈ F size (C ) = 1 )
F ←substitute ( F , head (C ) )  ;

return ( F ) ;

Figure 2: Davis-Putnam algorithm for 3SAT. The problem instance is a Boolean formula F in 3CNF rep-
resented as a list of clauses, where each clause is a list of at most three variables, and each variable is ei-
ther a literal or a negated literal. The search() function operates recursively, removing satisfied clauses
from F until either there are no more clauses left in F or one of the clauses in F is shown to be unsatisfi-
able. The splitting rule is encoded explicitly in the ordering and pattern of negations in the list S, which
initially contains all of the literals in F , some of which may be negated. Variables whose values are set
‘‘early’’ by unit propagation are ‘‘skipped’’ in the third clause of the large conditional statement. The
substitute() function constructs and returns G, a new copy of F with satisfied clauses filtered out and ref-
erences to the negated sense of variable V removed from the remaining clauses. The functions head() and
size() functions return the first element and the cardinality of their argument, respectively, and the func-
tion extractVars() returns a list of the variables contained in the given formula.
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practice, the order with which variable settings are tried has a critical effect on the time to solution.

Numerous splitting rules, or heuristics for ‘‘good’’ orderings, exist, but no universal rule will work for all

problem instances: existence of a universal splitting rule providing polynomial time performance on all

3SAT problem instances would imply P = NP.

Parallelizing the algorithm of Figure 2 using partitioning is relatively straightforward: we explore

recursive calls to search() on separate processors as long as additional processors are available. Of course,

we can’t really know a priori how large each individual subspace is, as some branches may quickly lead

to an inconsistent partial solution. This means that it is hard to ensure that the work is fairly distributed

over the available processing elements. Furthermore, without some notion of subspace size, it is difficult

to determine whether a processor assigned to a subspace has actually failed, gone offline, or is simply

taking a long time to search what turned out to be an unexpectedly large space. Addressing load balancing

and fault tolerance issues can only add to the overhead costs associated with partitioning [Reinefeld94].

Compare this partitioning strategy with nagging (see Figure 3). At initialization, each nagger is

provided with the original Boolean formula that specifies the 3SAT problem we wish to solve. A nagging

episode begins when the nagger requests a nagpoint from its master, who briefly interrupts its own search

to select a random nagpoint. Each nagpoint corresponds to one of the partially-instantiated Boolean

formulae considered by the master in the course of its recursive calls to search(). Upon receiving the

nagpoint, the master resumes its own search, while the nagger first applies a problem transformation

function to the nagpoint (e.g., by reordering the list of as-yet-unbound variables, or by randomly inverting

their logical sense, thereby switching the order in which V and ¬V are explored), and then begins its own

search. Should the nagger find an assignment that makes the formula true, it interrupts the master and

provides the solution, which the master can then in turn provide as the solution to the problem. Should the

nagger instead exhaust its space without finding a solution, it can interrupt the master and force the master

to backtrack past the nagpoint. Should the master backtrack over the assigned nagpoint before the nagger
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status ≡ true | false | abort

nag3sat ( F : formula ) : boolean ;
N : formula ;
result : status ;

niceInit ( )  ;
if ( niceRoot ( ) ) then return ( searchExplicit ( F , extractVars ( F ) ) )  ;
else

while ( true )
N ←niceIdle ( )  ;
result ←searchExplicit ( N , transform ( extractVars ( N ) ) )  ;
if ( result = true ) then niceSolve ( N , result ) ;
elseif ( result = false ) then nicePrune ( N ) ;

Figure 3: Sketch of nagging implementation for the algorithm of Figure 2. The call to niceInit() connects
to the NICE infrastructure and ensures copies of this process are spawned on all participating processors;
it also ensures spawned processes are provided with copies of the original problem. The root process (the
function niceRoot() returns true only on the root processor) performs the normal Davis-Putnam search,
while non-root processes engage in a series of nagging episodes, each initiated when niceIdle() requests a
new nagpoint, denoted N . The function searchExplicit() is logically equivalent to the search() function of
Figure 2, but with explicit stack manipulation and interrupt handling capabilities for processing messages
to/from parent/child processes (convenient primitives to support this functionality are provided in the
NICE API). For the nagging processors, the transform() function randomly reconfigures the splitting rule
as described in the text. Depending on the outcome of the nagger’s search, the nagger may pass a solution
to its parent (function niceSolve()) or force its parent to backtrack (function nicePrune()). Note that a nag-
ger’s search may also be interrupted by its parent if the parent exhausts the space rooted at the nagger’s
nagpoint before the nagger does; in this case, searchExplicit() would immediately return abort, and the
nagger would simply request a new nagpoint.

completes its own search, the master should abort the nagger, who is then free to seek a new nagpoint

from the master.

Of course, simply racing the nagger against the master may not produce useful speedups; what is

really needed is a good problem transformation function that will increase the nagger’s chances of beating

the master within the subspace defined by the nagpoint, hence reducing the master’s own search space.

The insight is that a serial search procedure must necessarily commit to searching a single incarnation of

12
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the current problem’s search space, while alternate versions of the same search space may entail differing

effort to search. Since expected time to solution for a given problem instance is critically dependent on

the splitting rule used, changing the splitting rule may lead the nagger to complete its search more quickly

than the master.

To gauge if such a strategy might succeed, we can, as a first approximation, empirically examine

how a random permutation applied to both variable selection and descendent ordering (i.e., a random

splitting rule) affects the overall solution time. We randomly generate 100 ‘‘difficult’’ 3SAT problems of

varying sizes [Selman96]. For this demonstration, time to solution is measured and recorded twice for

0.1

1

10

100

1000

0.1 1 10 100 1000

Random search order vs. default search order
trnd

tstd

Figure 4: Davis-Putnam algorithm applied to 100 randomly-generated ‘‘difficult’’ 3SAT problems of various sizes.
Each problem is solved twice, once using the default search ordering (tstd ) and the second time with the permutation
transformation applied before solving (trnd ). Results are shown on a log-log scale for clarity. Had all the datapoints
been tightly clustered along the diagonal trnd = tstd line, the probability of a nagging processor beating the master
would be low; since this is not the case here, permutation appears to be a good candidate problem transformation
function for this particular domain.
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each 3SAT: once using the default search ordering (tstd ) and the second time with the random permutation

transformation applied before solving (trnd ). The results are shown in Figure 4; each datapoint in the

graph represents the CPU time required to solve the permuted problem (ordinate) plotted against the CPU

time for default problem (abscissa). Datapoints appearing below the diagonal trnd = tstd line represent

problems that were solved more quickly with the permutation function applied, while those falling above

the diagonal were solved more quickly using the default ordering.

We observe that the random splitting rule beats the default splitting rule about half the time,

sometimes by a significant margin (note the plot uses a log-log scale for clarity, although unfortunately

this somewhat obscures the magnitudes of the differences). The datapoints do not lie tightly clustered

about the diagonal line: the farther off the line they are, the greater advantage one might expect to see in a

nagging system using this problem transformation function.3 This demonstration illustrates how speedups

are possible even if only a single nagging episode is allowed per problem and even if the selected

nagpoint is always the root node of the search. Indeed, since each nagging episode gives you another

chance of beating the default splitting rule, multiple nagging episodes over a broad array of properly

selected nagpoints should have a better chance of improving a system’s overall search performance, an

effect we’ll observe in the experiments of Section 6.

4.2. A* Search

Consider the well-known traveling salesperson problem, or TSP. The problem is as simple to state

as it is hard to solve:

3 Of course, this is just an example; more effective problem transformation functions might make use of alter-
native splitting heuristics, or might even elect to throw away a subset of clauses in order to decrease the size of the
search space. In the latter case, solutions in the reduced space no longer correspond to solutions of the original
Boolean formula; however, failure to find a solution for this smaller space still implies no possible solution exists for
the original space, so the master can still be forced to backtrack.

14
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Given a collection of N points, find the shortest tour that visits each point and returns to the
original starting point.

TSP problems lie hidden in a surprisingly large number problems from operations research and

engineering; since TSP is known to be NP-hard, much research has focused on appropriate algorithms

and the use of heuristics to find good yet less-than-optimal solutions quickly [Reinelt94]. Yet devising an

algorithm that is guaranteed to provide the (globally) optimal solution is simple, if one is willing to accept

poor worst-case performance. Here, we examine one such optimal algorithm for Euclidean TSP (i.e.,

where the points lie in Euclidean space) based on A* search, a heuristically-guided branch-and-bound

search strategy.4

The obvious solution technique is to enumerate all possible tours and then return the shortest one.

Starting with an arbitrary 3-point tour and using symmetry to reduce the space, it is easy to see that there

are
(N − 1)!

2
different possible tours. We can do a little better by showing that the H points defining the

convex hull of the point set must appear in fixed order in any optimal tour; by starting with the convex

hull (as opposed to a random 3-point tour), we can reduce the size of the search space, slightly, to

(N − 1)!

(H − 1)!
. In either case, an exhaustive search algorithm operating on this search space will require, by

Sterling’s formula, O(N N ) time.

The basic insight required to turn this simple enumeration algorithm into a branch-and-bound

algorithm is that information garnered during the search can be used to reduce the combinations that must

be examined. If the cost of the current partial solution is greater than that of the shortest solution found so

far, we can exclude all completions of the partial solution from the search — since, in Euclidean space,

4 Note that we are not recommending this as a solution technique for TSP problems encountered in practice;
rather, we are using TSP as an intuitively accessible example with which to describe the parallelization of A* search.
Most real applications would be better served by using one of the many efficient heuristic algorithms for TSP that
yield good, but not optimal solutions, although advanced cut techniques have been combined with partitioning
strategies to find optimal solutions to problems as large as 15,000 points [Applegate98].
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adding more points to the tour can only make it longer — without sacrificing optimality. We can do even

better by incorporating a heuristic estimate of the cost to complete a partial tour, pruning subtrees rooted

at partial tours where the partial tour cost plus an estimate of the additional cost required to complete the

tour exceeds the cost of the current best solution. If the heuristic estimate used always underestimates the

true additional cost of the partial solution, we say the heuristic is admissible, and it can be shown that the

resulting A* search algorithm will still return the optimal solution while exploring no more nodes (and

generally far fewer nodes) than branch-and-bound search (see Figure 5) [Nilsson71].

tsp ( S : points ) : tour
H : tour ←convexHull ( S ) ;

return ( search ( H , ( S \ points ( H ) )  , ∅ ) )  ;

search ( T : tour , S : points , B : tour ) : tour
P : point ;

if ( S = ∅  ∧ ( B = ∅  ∨ cost ( T ) < cost ( B ) ) ) then return ( T ) ;
elseif ( S = ∅ ) then return ( B ) ;
elseif ( cost ( T ) + estimate ( S ) ≥ cost ( B ) ) then return ( B ) ;
else

P ←head ( S ) ;
for i from 0 to T  by 1

B←search ( insert ( P , i , T ) ,  ( S \ {P} ) , B ) ;
return ( B )

Figure 5: A* algorithm for Euclidean TSP. The tsp() function takes a set of points S as input and returns the lowest-
cost tour. The heart of the code is the recursive function search(), which takes a partial tour T , a set S of points yet
to be visited, and B, the lowest-cost tour found so far, and recursively explores the space rooted at that partial tour.
Note that if no solution better than B can be found below T , then there is no need to search any further. The cost()
function returns the cost of its tour argument, or 0 if the argument is the null tour ∅ , while estimate() returns a low-
er bound on the additional cost of adding the points in its argument to any existing partial tour. As before, the func-
tion head() returns the first element of its argument, while points() returns the point set of its tour argument and in-
sert() inserts a new point P into the ith position of partial tour T . Parallelization of this algorithm with nagging fol-
lows in a manner similar to the sketch given in Figure 3.
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As for the Davis-Putnam algorithm, applying partitioning to the serial algorithm of Figure 5 is

relatively simple: the idea is to explore different recursive calls to search() on separate processors

[Cook98, Mahanti93, Powley93]. Of course, load balancing and fault tolerance issues are present here,

just as with the Davis-Putnam algorithm. But there are also additional complications due to fact that A*

search is not just a satisficing search (i.e., search to first solution) but rather an optimizing search (i.e.,

search to best solution). The difference is that every node in the search space must be either searched or

safely pruned so that the search procedure can certify that no better solution exists (compare with the

Davis-Putnam algorithm, where only unsatisfiable formulae entail an exhaustive search, while finding any

solution to a satisfiable formula terminates the search immediately). The net effect is to make the

subspaces more interdependent: to see why this is so, consider what happens when a new (and

presumably favorable) best solution is found in the first subspace explored by a serial search process.

Clearly, the new solution’s lower cost may lead to significantly less search in subsequent subspaces.

When these subspaces are searched in parallel, however, this new best solution may not be discovered

until most of the work in the other subspaces has already been performed. And even if the new best

solution is found soon enough to have an impact on the concurrent subspace searches, its cost must be

communicated to all the other processors, entailing some additional communication overhead.

We now consider parallelizing the serial algorithm of Figure 5 using nagging; the general idea is

identical to that of Figure 3 for the Davis-Putnam algorithm. Idle naggers request a nagpoint

(corresponding to a partial tour passed in one of the recursive calls of the search() function still on the

master processor’s calling stack) and search this space in parallel. Unlike the partitioning case, there are

no load balancing or fault tolerance problems here: nagpoints are generated whenever they are solicited,

and lost or unresponsive naggers can’t affect the master’s own search. Of course, as with the Davis-

Putnam algorithm, the key to effective nagging — that is, nagging that actually provides some speedup —

is an effective problem transformation function. One reasonable approach might be to randomly perturb

17



Segre, Forman, Resta & Wildenberg April 3, 2002 Nagging

the order in which points are inserted into the growing partial tour (e.g., by reordering the list of as-yet-

unvisited points), or perturb the order in which descendent nodes are generated (e.g., by changing the

insertion order within the loop of the searchExplicit() function). Alternatively, we might rely on problem-

specific knowledge and choose a mixture of the many TSP-specific heuristic ordering strategies from the

operations research literature. Or one might even adopt an abstraction transformation, where a nagger

simply throws away a certain number of points in the point set. This transformation can still provide

speedup if the optimal tour in the abstracted search space is longer than the master’s current best solution

(in Euclidean space, the cost of the optimal tour for the reduced problem is a lower bound to the cost of

the optimal tour on the original points). We’ll look at how nagging compares with partitioning for the

Euclidean TSP algorithm just described in Section 6.

4.3. SPAM: α β Minimax Search

Historically, much research within the artificial intelligence community has focused on the problem

of playing zero-sum two-player games, such as chess or checkers. Most of this research involves

derivatives or variants of α β minimax search, which is itself a straightforward refinement of the original

notion of minimax search. Within this field, various forms of parallelism have also received a lot of

attention [Brockington00, Feldmann94, Ferguson88, Joerg94]. Here, we show how the α β minimax

search algorithm can be parallelized using nagging, producing an algorithm we call SPAM, for Scalable

Parallel Alpha-Beta Minimax.

The idea underlying any minimax procedure is to generate the tree of legal moves to a fixed depth

(given by the ply argument) and evaluate the quality of the resulting board positions using a static board

evaluation function, or SBE.5 The SBE looks at a board and returns a value on [−∞, ∞], with −∞
5 There exist numerous alternative formulations of the minimax search procedure. This particular formulation

was selected for its simplicity. Of course, any formulation of the minimax algorithm assumes that what is good for
one’s opponent is symmetrically bad for the player him or herself, and that the opponent is a rational one, making
decisions based on an identical SBE. Also, note that our formulation only returns the best SBE value found in the
tree of given ply rooted at the given board. In practice, the procedure should also return the corresponding move.
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representing a loss and ∞ representing a win for the specified player. By selecting the

maximum/minimum values at alternating levels, these leaf SBE values can be propagated up to the root of

the tree, by definition a maximizing level, where they can be used to select the branch leading to the best

attainable outcome for the current player. Deeper searches generally lead to more informed choices;

unfortunately, the size of the game tree that must be examined increases exponentially with the depth of

exploration. Thus for meaningfully large games (e.g., chess) this exponential growth makes all but the

most shallow searches impractical.

The intuition underlying α β pruning is to exploit information generated during the exploration of

one portion of the search space to justify skipping or pruning other parts of the space. Judicious pruning

can extend the computational horizon under which the search operates, allowing deeper searches in the

same amount of computation time. Of course, one can’t really beat the exponential nature of the search:

there will always be some practical maximum on the depth of search. The idea is to extend that maximum

as much as possible by reducing the number of branches that must be examined.

Extending the minimax algorithm to perform α β pruning is relatively straightforward; the basic

idea is to pass two additional parameters called α and β , which serve as bounds on the interesting values

at any giv en node (see Figure 6). Paths whose leaf values are guaranteed not to fall in the interval [α , β ]

(initially [−∞, +∞]) would never be chosen by the minimax procedure and therefore can be safely

ignored. As the game tree is searched, α values will only increase and β values will only decrease, further

constraining the search. It should also be clear that, by construction, α β minimax search produces

identical choices to minimax search in all cases. Furthermore, as with A* search, the search reduction

produced by α β pruning depends on the order in which paths are searched; for some pathological game

trees, α β minimax and standard minimax will search identical game trees.6 From an analytic perspective,

6 Indeed, many real-world implementations of α β minimax search try to improve performance by generating
internal choice points in an ordered fashion, usually guided by a cheap, fast, secondary SBE function applied to the
board positions represented by these internal nodes. Of course, board positions which look ‘‘bad’’ locally may actu-
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alphabeta ( B : board , P : player , D : integer ) : score
return ( search ( B , P , D , −∞ , +∞ )

search ( B : board , P : player , D : integer , α : score , β : score ) : score
M : move ;

if ( won ( B , opponent ( P ) ) ) then return ( α ) ;
elseif ( D = 0 ) then return ( SBE ( B , P ) )  ;
else

for M in legalMoves ( B , P )
α = max ( α , −search ( applyMove ( B , M ) , opponent ( P ) , D − 1 , − β , −α ) ;
if ( α > β ) return ( α ) ;

return ( α ) ;

Figure 6: ‘‘Negamax’’ formulation of α β minimax search algorithm. Return the best possible score player P can
hope to attain in the search space of D depth rooted at board B. Pruning occurs when α exceeds β within the loop
over the possible legal moves at this board position, causing the function to return immediately. We assume the
won(), legalMoves(), SBE(), and applyMove() functions have the appropriate game-specific definitions; opponent()
returns the other player, and max() has the usual semantics.

the number of calls to the SBE will vary between roughly 2b
d

2 (the best case) and bd (the worst case) for

a game tree of depth d with uniform branching factor b [Knuth75]. Thus while the exponential factor is

still present, it may be significantly reduced, allowing deeper, more informed, searches in the same

amount of time.

While implementing α β minimax search requires only minor extensions to the basic minimax

procedure, these modifications make attempts to parallelize the search significantly more complicated.

This is because minimax search is easily decomposed at any node, and game trees rooted at each child

node can be considered independently by separate processing elements. Once child SBE values are

computed in parallel, it is a simple matter to compare these estimates and select the best alternative. In

ally turn out to be ‘‘good’’ sev eral ply deeper, so internal choice point reordering is nothing more than a greedy opti-
mization technique that may lead to — but does not guarantee — more efficient search.
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contrast, for α β minimax search, partitioning and parallel exploration of the game tree may well require

more time than the corresponding serial search. This is because the savings realized by α β pruning over

standard minimax search result from exploiting the information obtained searching one part of the game

tree while exploring another (like for A* search, but unlike for the Davis-Putnam algorithm). Even if one

could instantly share new α and β values with all of the processing elements at zero communication cost,

the new values may come too late to matter. In short, the parallel algorithm might well search a greater

number of nodes than would the serial algorithm.

The SPAM algorithm exploits all of the search constraints embodied by the α and β values while

keeping communication between processing elements infrequent and brief. The nagging algorithm (see

Figure 7) is essentially identical to that described for A* search and the Davis-Putnam algorithm, except

that here we will exploit a problem transformation function based on both permutation and window

narrowing. The idea is that a nagger can artificially restrict its master’s α β window; using a narrow

interval [α ′, β ′] (where α < α ′ and β ′ < β ) ensures that the nagger’s search procedure will prune

aggressively, exploring only a relatively small number of nodes in the search space, thereby increasing the

odds that it will beat the master (of course, we can also permute the node exploration order as well).7 In

exchange for the reduction in search, the value computed by the nagger’s transformed search may not

always be directly substituted for the true value that would be computed by the master for the same

subspace. More precisely, if the nagger returns a value that is greater than α ′ and less than β ′, then this

corresponds to the true value that would be computed by the master, and we can force the master to

backtrack and continue its search from that point on. But if the nagger returns a value less than α ′

(alternatively: greater than β ′), then it means that the true value lies between α and α ′ (alternatively: β ′

and β ). This information can be used to reduce the master’s search space by setting the master’s β to α ′

7 In the limit, where α ′ + ε = β ′ this reduces to zero-window search [Norvig92].
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nagpoint ≡ {B : board , P : player , D : integer , α : score , β : score}

nagalphabeta ( B : board , P : player , D : integer ) : score
N : nagpoint ;
result , α ′ , β ′ : score ;

niceInit ( )  ;
if ( niceRoot ( ) ) then return ( searchExplicit ( B , P , D , −∞ , +∞ )
else

while ( true )
N ←niceIdle ( )  ;
{α ′ , β ′ } ←narrow ( N.α , N.β )
result ←searchExplicit ( N.B , N.P , N.D , α ′ , β ′ )
if ( result > α ′ ∧ result < β ′ ) then niceSolve ( N , result ) ;
elseif ( result = α ′ ) then niceRestrict ( N , N.α , result ) ;
elseif ( result = β ′ ) then niceRestrict ( N , result , N.β ) ;

Figure 7: Sketch of nagging implementation for the algorithm of Figure 6. As for Figure 3, the function
searchExplicit() is identical to the search() function of Figure 6, but with explicit stack manipulation and
interrupt handling capabilities. The root process performs the normal α β minimax search, while non-root
processes engage in a series of nagging episodes, each initiated when niceIdle() requests a new nagpoint.
Nagpoints are again denoted N , but here consist of a board position, the next player to move, a search
depth limit, and α and β values. For the nagging processors, the narrow() function randomly reduces the
search range as described in the text, and serves as a part of the problem transformation function in com-
bination with permutations, provided by modifying the nagger’s copy of the legalMoves() function (Fig-
ure 6) to randomly perturb the sequence of legal moves generated. Depending on the outcome of the nag-
ger’s search, the nagger may pass a solution to its parent (function niceSolve()) or force its parent to refine
its own α or β parameters (function niceRestrict()). Note that a nagger’s search may also be interrupted
by its parent if the parent exhausts the space rooted at the nagger’s nagpoint before the nagger does; in
this case, searchExplicit() would immediately return abort, and the nagger would request a new nagpoint.

(alternatively: α to β ′), which may well lead to immediate improvement of the search efficiency for the

master’s current search. In Section 6 we’ll empirically examine the behavior of SPAM with this problem

transformation function.
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5. Analysis

We now introduce simple analytical models of both nagging and partitioning that help to explain

how and when nagging can be expected to provide a performance advantage over more traditional

partitioning methods. Our analysis relies on techniques developed for reliability data analysis;

specifically, understanding how a problem transformation function used defines a probability distribution

of solution times for a specific problem [Lee92, Mann74, Meeker98].

Let us assume that a random variable x drawn from a distribution Χ represents the solution time of a

specified problem under a given problem transformation function. Of course, the exact nature of Χ

depends on the search algorithm and problem transformation function applied; we’ll examine different

choices for Χ later. The behavior of x can be described by its density function f (x) and its corresponding

cumulative density function F(t), which measures the probability that the solution time x is less than

some specified time value t:

(5.1)F(t) = Pr(x ≤ t) = ∫
t

x=0
f (x)dx

Note that the physical interpretation of x imposes certain constraints on allowable values for f (x) and

F(t): more precisely, f (x) ≥ 0, f (x) = 0 for x ≤ 0, F(0) = 0, and F(∞) = 1 follow from the fact that real

problems are never solved in less than zero time and the probabilistic semantics of F(t).

We can use this statistical model to study the behavior of the coarsest possible form of nagging,

where each of the n nagging processors operates on an identical copy of the entire problem instance. In

essence, the n naggers are racing to find a solution, each operating on a different, solution-equivalent,

transformation of the original space.8 Once any processor completes its search, the solution it finds (or

8 A solution-equivalent transformation is one that transforms the original space without losing any existing so-
lutions or adding spurious solutions; the permutation transformation is a good example of a solution-equivalent
transformation, while the abstraction transformation of Section 4.2 and the window narrowing transformation of
Section 4.3 are not.
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fails to find) applies without modification to the original problem instance. In practice, multiple naggers

usually search different, randomly selected, nodes along the master’s current search path in service of a

master search process; furthermore, some of the more effective transformation functions in use may not

be solution equivalent (see, e.g., the abstraction transformation of Sections 4.1 and 4.2, and the window

narrowing transformation of Section 4.3).

Let the random variable vn represent the time elapsed before one of the n independent processors

finds the problem solution. Clearly, for the coarse nagging model, vn = min(x1, x2, . . . , xn) where each xi

is an independent random variable drawn from the original distribution Χ. Let Gn(t) be the corresponding

cumulative density function of vn. Since vn = min(x1, x2, . . . , xn), and each xi is independent, Gn(t)

represents the probability that at least one of the xi values is less than t, which is 1 minus the probability

that all the xi values exceed t. Thus using Equation 5.1:

(5.2)Gn(t) = Pr(vn ≤ t) = 1 −
n

i=1
Π(1 − F(t)) = 1 − (1 − F(t))n

Taking the derivative of Gn(t) with respect to t evaluated at vn yields the density function gn(vn):

(5.3)gn(vn) = n f (vn)(1 − F(vn))n−1.

A similar argument can be made to construct a coarse model of partitioning. Technically, the argument is

somewhat more problematic, since once a problem is partitioned and distributed to different processors,

each processor is indeed solving a different problem, whose solution time distributions might vary

significantly from the original one. However, as is the case with nagging, we can make reasonable

assumptions to support some crude — but still informative — comparisons between the two models.

First, we assume that the original problem, whose solution time is still described by a random

variable x drawn from a distribution Χ, is partitioned in n subproblems each having identically-sized

search spaces; essentially, we’re claiming a perfect a priori solution to the load balancing problem.

Second, we assume that fault tolerance is not an issue, and that all processors actually will terminate their

search and return their partial solutions. Third, we assume that run times scale linearly, that is, that the
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run time of a subproblem of size
1

n
is governed by

x

n
, where the random variable x refers to the solution

time of the original problem. Finally, we assume that the cost of merging the subproblem solutions

together to form a solution to the original problem is negligible. The last assumption is the most

problematic, since for NP-hard problems the cost is likely to be high if the merger is even feasible.

However, since it is our intent to compare this model of partitioning with nagging, we can afford to make

generous assumptions on behalf of partitioning without compromising the essence of our comparisons.

With these assumptions in place, the time required to solve the partitioned problem under this coarse

partitioning model is described by a random variable wn defined as wn = max(
x1

n
,

x2

n
, . . . ,

xn

n
), since it

is necessary to solve each of the subproblems before merging their solutions together.9 Proceeding in the

same fashion as for nagging, we obtain the density function hn(wn) from the cumulative density function

Hn(t) as follows. Since Hn(t) represents the probability that wn < t, i.e., all the
x

n
are less than t, we

have:

(5.4)Hn(t) = Pr(wn ≤ t) =
n

i=1
Π Pr(

xi

n
< t) = F(nt)n

from which we obtain:

(5.5)hn(wn) = n2 f (nwn)(F(nwn))n−1 .

Note that g1(v1) = h1(w1) = f (x) and thus G1(t) = H1(t) = F(t), just as one should expect given that the

single processor system is the trivial case of both the coarse nagging and coarse partitioning models.

9 Unfortunately, the model becomes more complicated for satisficing — as opposed to optimizing — search.
Consider the Davis-Putnam algorithm: if the Boolean formula is true, the algorithm will terminate when the first

subproblem that finds a solution terminates, or wn = min(
x1

n
,

x2

n
, . . . ,

xn

n
). On the other hand, if the Boolean formu-

la is false, the search will have to exhaust the entire search space to guarantee no solution is overlooked, and thus the

required time should be wn = max(
x1

n
,

x2

n
, . . . ,

xn

n
) as giv en in the text. Thus a mixture model that blends these two

cases together might provide a more appropriate model of satisficing search.

25



Segre, Forman, Resta & Wildenberg April 3, 2002 Nagging

Once the appropriate distribution Χ has been fixed, it is relatively easy to make performance

comparisons between serial execution, coarse nagging and coarse partitioning by comparing their

expected solution times.

5.1. The Uniform Distribution

The first sample distribution we look at is the simplistic case where Χ is the uniform distribution

with values x ranging between two constants tlo and thi .
10 For this uniform distribution, the density

function is:

(5.6)f (x) =
1

(thi − tlo)

for tlo ≤ x ≤ thi and f (x) = 0 elsewhere. It easy to see that:

(5.7)F(t) = ∫
t

x=tlo

1

(thi − tlo)
dx =

t − tlo

thi − tlo

for tlo < t < thi , F(t) = 0 for t ≤ tlo and F(t) = 1 for t ≥ thi . Applying Equation 5.3, we obtain the density

function for an n-processor coarse nagging system:

(5.8)gn(vn) =
n(thi − vn)n−1

(thi − tlo)n
.

In a similar fashion, but using Equation 5.5 for the n-processor coarse partitioning model, we obtain:

(5.9)hn(wn) = n2 (nwn − tlo)n−1

(thi − tlo)n
.

5.2. The Exponential Distribution

Using the same approach we can consider other, more realistic, probability distributions. Here we

look at an exponential distribution with a fixed minimum time tlo and decay parameter λ . The exponential

10 From a practical perspective, the uniform distribution is not of great interest, since there is relatively little
reason to believe solutions times of real problems would fit. Nonetheless, it does serve as useful point of comparison
for the other distributions considered later in this paper.
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distribution has long been used to model equipment failure in reliability studies; it follows from a uniform

random failure pattern, modeled as a Poisson process [Mann74]. This distribution’s density function is

given by:

(5.10)f (x) = λ
e−λ x

e−λ tlo
= λeλ(tlo−x)

with cumulative density function:

(5.11)F(t) = − eλ(tlo−t) .

Appropriate substitution in Equation 5.3 yields:

(5.12)gn(vn) = n λeλ n(tlo−vn)

for the coarse nagging case, while Equation 5.5 produces:

(5.13)hn(wn) = n2λeλ(tlo−nwn)(1 − eλ(tlo−nwn))n−1

for the coarse partitioning case.

5.3. The Lognormal Distribution

Recently, some have characterized the observed behavior of backtracking search on satisfiability

problems using distributions of the Pareto-Lévy form. Such distributions differ from the exponential

distribution used in Section 5.2 because they are heavy tailed, that is, their complementary cumulative

density function 1 − F(t) decays slower than exponentially. Heavy tailed distributions have been used to

justify a random restart strategy (a sort of single processor version of coarse nagging) for satisfiability

problems [Gomes00]. Many different heavy-tailed distributions are used in reliability analysis, although

the most commonly used are the Weibull and the lognormal distributions (others include the Gumbel or

extreme value distribution, the Birnbaum-Saunders distribution, etc.). The key question remains how to

choose which distribution best models the observed search behavior — not only for satisfiability

problems, but for all the search problems studied here. Fortunately, exploratory data analysis techniques

for testing distributional adequacy such as the the Kolmogorov-Smirnov or the (somewhat more sensitive)
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Anderson-Darling goodness-of-fit tests are well known [Stephens74], and support our use of the

lognormal distribution for this analysis.11

Consider a lognormal distribution with fixed minimum time tlo, scale parameter µ, and shape

parameter σ . The distribution’s density function is:

(5.14)f (x) =
1

σ (x − tlo)√ 2π
e

−(log(x−tlo)−µ)2

2σ 2 .

The cumulative density function can be expressed in terms of Φ (the cumulative density function of the

standard normal distribution), or erf (the error function), that is:

(5.15)F(t) = Φ


log(t − tlo) − µ
σ




=
1

2
+

1

2
erf 


log(t − tlo) − µ

√2σ



.

Appropriate substitutions can be made into Equations 5.3 and 5.4 to obtain gn(vn) and hn(wn), although

the resulting expressions are not terribly informative since expressions containing erf are notoriously

difficult to simplify.

5.4. Comparing Nagging and Partitioning

We are now ready to make direct comparisons between performance estimates for coarse nagging

and for coarse partitioning for some range 1 . . . n of processing elements. One simple comparison is to

look at the performance ratios, defined as the ratio of the serial expected solution time E(x) to the parallel

expected solution time E(vn) (for nagging) or E(wn) (for partitioning), where the expected solution times

11 We generated four sets of 100 datapoints each by solving a single problem for each of A*/TSP, Davis-Put-
nam/3SAT/unsatisfiable, Davis-Putnam/3SAT/satisfiable, and SPAM/Othello 100 times using a strictly solution-
equivalent problem-transformation function (i.e., permutation in this case). We then applied the Anderson-Darling
test to see which of the set of tested distributions (normal, lognormal, exponential, Weibull, Gumbel, and logistic)
were consistent with the observed data. In all but two cases, the Anderson-Darling test rejected (p < 0. 05) all of the
tested distributions except for the lognormal distribution (the exceptions are the Davis-Putnam/3SAT/satisfiable data,
where the Anderson-Darling test rejected all but the lognormal and Weibull distributions, and the SPAM/Othello da-
ta, where the Anderson-Darling test rejected all but the lognormal and Gumbel distributions). While these tests are
not entirely conclusive (they are, after all, based on just a few randomly-generated problems), they do seem to sug-
gest that the lognormal is well suited to modeling the range of search behaviors studied in this analysis.
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E(x), E(vn) and E(wn) are simply the average elapsed times.

A more meaningful statistic is the expected speedup, defined as the expected value of
x

vn
for

nagging (alternatively:
x

wn
for partitioning). We say this metric is more meaningful because it represents

the expected speedup observed in an experiment where serial performance is compared directly with

parallel performance on each individual problem. We define a new random variable φ n =
x

vn

(alternatively: ψ n =
x

wn
) and compute its expected value E(φ n) (alternatively: E(ψ n)). Since both φ n and

ψ n are ratios, we consider their geometric means, that is:

(5.16)E∗(φ n) = eE(log(φ n))

and:

(5.17)E∗(ψ n) = eE(log(ψ n))

rather than E(φ n) orE(ψ n) directly, since the geometric mean is more representative of the expected

speedup over many such trials. Exploiting the additive properties of expected values and the fact that x

and vn (alternatively: x and wn) are independent, we obtain:

(5.18)E(log(φ n)) = E(log(x)) − E(log(vn)) = ∫
thi

x=tlo

log(x) f (x)dx − ∫
thi

vn=tlo

log(vn)gn(vn)dvn

and, similarly:

(5.19)E(log(ψ n)) = ∫
thi

x=tlo

log(x) f (x)dx − ∫
thi

wn =
tlo

n

log(wn)hn(wn)dwn .

Unfortunately, the formulae for E∗(φ n) and E∗(ψ n) are often quite complex in the general case. However,

values for both E∗(φ n) and E∗(ψ n) are easily tabulated for specific values of n, which lend themselves to

graphical comparison (see Figure 8). Qualitatively speaking, Figure 8 makes clear the noticeable scaling

advantage of nagging over partitioning within this analytical model, especially for the exponential and

lognormal distributions, which correspond more closely to distributions observed in practice.
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Figure 8: Expected speedups E∗(φ n) and E∗(ψ n) vs. number of processing elements for uniform (tlo = 0. 01,
thi = 1. 0), exponential (tlo = 0. 01, λ = 2), and lognormal distributions (tlo = 0. 01, µ = 0. 5, σ = 1. 5). This statistic
illustrates the scaling advantage of nagging over partitioning within this simple analytic model for all three distribu-
tions studied, and how the advantage of nagging grows as the distribution becomes more heavy tailed.
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Another interesting metric is suggested by closer examination of the performance ratio for coarse

nagging in the exponential distribution case:

(5.20)
E(x)

E(vn)
=

tlo +
1

λ

tlo +
1

nλ

.

We note that, when both λ and tlo are small, the performance advantage obtained by coarse nagging can

— on average — approach n, or linear speedup. This implies that coarse nagging can be expected to

provide superlinear speedups with respect to a serial search about half the time in the exponential

distribution case. For heavy-tailed distributions, the advantage of coarse nagging is even more decisive,

providing some theoretical justification for the observed effectiveness of random restart strategies on

serial processors.

More formally, it is interesting to compute and compare the probability that a coarse nagging or

partitioning system will exhibit superlinear speedup with respect to the average sequential case, which is

easily expressed as:

(5.21)Pr

vn ≤

E(x)

n



= Gn



E(x)

n



for nagging, and:

(5.22)Pr

wn ≤

E(x)

n



= Hn



E(x)

n



for partitioning. As before, while the resulting expressions may be difficult to simplify, it is easy to

tabulate values for n = 2 . . . 10:

Technique Distribution n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
Nagging Uniform 0.43 0.41 0.39 0.38 0.37 0.36 0.36 0.35 0.34
Partitioning Uniform 0.25 0.13 0.06 0.03 0.02 0.01 0.00 0.00 0.00
Nagging Exponential 0.62 0.62 0.61 0.60 0.59 0.59 0.58 0.57 0.56
Partitioning Exponential 0.40 0.25 0.16 0.10 0.06 0.04 0.03 0.02 0.01
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Nagging Lognormal 0.85 0.88 0.89 0.90 0.91 0.91 0.91 0.91 0.91
Partitioning Lognormal 0.60 0.46 0.36 0.28 0.21 0.17 0.13 0.10 0.08

It is clear that, for all of the distribution models studied here, the coarse model of nagging retains its

potential for producing superlinear speedup as the number of processors is increased, while the already

limited potential of partitioning to do so rapidly vanishes as more processors are added.

Of course, the analytic models presented here are relatively simple, and do not correspond exactly

with how nagging and partitioning are actually applied in practice. We’re mostly interested in how well

the observations made using the coarse models hold up in more realistic situations: for example, we might

nag or partition recursively, use problem distribution functions that are not strictly solution equivalent

(e.g., window narrowing or abstraction), or elect to nag or partition multiple times per problem at internal

nodes of the search tree rather than just once at the root node. We turn to these rather more practical

questions in the next section, using experimentally-obtained quantitative data to support our claims about

nagging’s performance in a principled manner.

6. Empirical Evaluation

Empirical studies, if carefully done, can give a realistic picture of a system’s behavior. Here, we

focus on performance issues, using experimental data to contrast the relative performance of nagging and

partitioning as well as to support our claims regarding the scalability of nagging.

6.1. Experiment 1

The first experiment compares implementations of nagging and partitioning that are purposefully

designed to evoke the coarse analytic models of the previous section. The experimental procedure is

straightforward. First, for each of the three tested algorithms (Davis-Putnam/3SAT, A*/TSP, and

SPAM/Othello), 100 randomly-generated problems are solved serially using a fixed search order on a 450
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MHz Celeron machine running the Linux operating system.12 Next, a second 450 MHz Celeron machine

is added to the NICE hierarchy, and each problem is solved twice more, once using the second machine as

a nagging processor and once using is as a partitioning processor instead. For each problem, the solution

found and elapsed processor time used by the master processor (as returned by the ANSI C clock()

function) are recorded. Any search that is not completed by a prespecified resource limit is marked as

censored, and the best solution found so far is returned for comparison.

Like the coarse analytic models of the previous section, the only problem transformation function

used here is the permutation transformation, which is used for all three algorithms (we’ll examine other

transformation functions in Section 6.2). Unlike the coarse analytic models, however, for optimizing

search algorithms (SPAM/Othello and A*/TSP), more than one nagging event may occur in the course of

the experiment. While nagging always takes place at the root node, a nagger that finds a better solution is

allowed to immediately report its new bound to the master and begin a new nagging event, applying the

newly obtained bound and a new permutation transformation to the root node once more.

A similar change is made for the partitioning case: to address the load-balancing issues normally

associated with partitioning, we use an asynchronous partitioning protocol that is similar to that used for

nagging. As with nagging, an idle slave processor initiates the process by requesting additional work from

its master. Instead of a nagpoint, however, the master provides its slave the last available sibling node of

the ‘‘highest’’ available ancestor node along its own search path. The slave then searches this partition

using the identical search ordering as the master. When the slave completes its search, it reports the result

to the master who then marks the assigned sibling node as solved. The master is then free to assign

12 The random problem sets were generated to provide a good cross-section of solution times ranging from
0.01 seconds (the resolution of the Linux system clock) to roughly 20 minutes on a single processor system. Davis-
Putnam/3SAT problems ranged from 120 to 140 variables (with between 514 to 604 clauses), and were, as men-
tioned in Section 4.1, intended to be ‘‘difficult’’ problems, while the randomly-generated A*/TSP problems ranged
from 29 to 33 cities. The SPAM/Othello problems consisted of random, legal, mid-game Othello boards (having 18
to 22 pieces placed) searched to an 8 or 9 ply horizon.
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another partition to the slave. Note that if the master’s search enters the subspace assigned to a slave, the

slave in effect becomes a nagger, albeit one without the benefit of a problem transformation function, but

with a head start on its search space.

All of the 3SAT problems were solved by every system configuration within the prespecified

resource limit. For the Othello problems, one of the 100 random problems was censored (not solved

within the resource limit) by the serial search system, yet was easily solved by both the nagging and

partitioning systems. The situation is more complicated for the TSP problems, as a total of 14 problems

were censored by the serial system. Of these 14 problems, five were solved to optimality by both the

nagging and partitioning system, and one additional problem was solved to optimality by the nagging

system alone. It is important to note that where censoring occurred in both serial and parallel

configurations, qualitatively better solutions were produced by the parallel systems (for six of eight such

problems, nagging found the shortest tour, while partitioning found the shortest tour in the remaining two

cases). So, at least in terms of number of problems solved to optimality as well as quality of solution

when problems were not solved optimally, the performance edge appears to belong to nagging.

Differences in solution quality aside, we are mostly interested in quantifying changes in system

performance. Here, we compare computed speedup values (recall speedup is defined as the ratio of serial

solution time to parallel solution time), where a speedup value of 1. 0 implies no difference between the

serial and parallel systems, while larger speedups imply the parallel system is faster.13 The following table

13 Methodologically, direct comparison of sets of speedup values is somewhat difficult for a number of reasons.
First, as noted earlier, reporting arithmetic means for ratios like speedup is problematic; reporting geometric means
would perhaps be a better choice, but this is not consistent with the general practice of the parallel processing com-
munity, where arithmetic means are the norm. Furthermore, it is important to keep in mind that the distribution of
observed speedup values are quite skewed (not surprisingly, giv en that, by definition, they are bounded below at 0):
simply reporting summary statistics that evoke normal distributions in the minds of some readers is misrepresenta-
tive. Finally, some caution must be exercised when comparing censored datapoints [Segre91]. Since identical re-
source limits are imposed on both parallel and serial trials, doubly-censored datapoints will have unit speedup val-
ues. Singly-censored datapoints are harder; fortunately, in our experiments, all singly-censored datapoints are cen-
sored by the serial system (never by the parallel system), so their computed speedup values represent underestimates
of true speedup. Note, however, that direct comparisons of computed speedup values between uncensored and
singly-censored datapoints or singly-censored and doubly-censored datapoints should be made only with care.
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presents minimum, arithmetic mean (µ), geometric mean (µ∗), and maximum speedups computed

excluding doubly-censored datapoints for all tested systems:

Nagging Speedup Partitioning Speedup
N min µ µ∗ max N min µ µ∗ max

A*/TSP 92 0.86 2.43 1.51 69.73 91 0.55 1.80 1.68 5.23

SPAM/Othello 100 0.98 3.28 1.55 148.32 100 1.01 2.14 1.75 22.55

Davis-Putnam/3SAT 100 0.45 7.54 2.00 221.00 100 0.55 7.39 1.87 481.17
satisfiable 49 0.45 12.93 2.50 221.00 49 0.55 13.43 2.25 481.17

unsatisfiable 51 0.98 2.36 1.62 14.19 51 1.07 1.59 1.57 1.99

Given the methodological difficulties just noted, some interpretation is in order. Consider, for example,

the A*/TSP and SPAM/Othello values shown in the table. For both of these algorithms, the mean speedup

µ reported by nagging is larger than that for partitioning, but the geometric mean µ∗ is less than that for

partitioning. This is a consequence of the nondeterministic nature of nagging; the amount of speedup you

get can vary dramatically from one trial to the next, even when solving the same problem. In contrast,

partitioning is by nature more conservative and likely to provide more uniform amounts of speedup on

subsequent trials. This behavior is also at least partially evident in the maximum speedup values shown,

as nagging’s best performance in the test suite represents an order of magnitude improvement over

partitioning. Note also that, as one would expect, the minimum values hover by and large at or just below

1. 0. Values below 1. 0  represent a performance penalty incurred by the parallel systems with regard to the

serial system. This is partly due to initial setup costs (e.g., connecting with the NICE infrastructure) and

partly due to communication overhead (as we shall soon see, the smallest values observed are usually

associated with problems that can be solved quickly with a single processor, hence precluding the

amortization of startup costs over longer solution times).

The results for the Davis-Putnam/3SAT problems are notably different from those for the other

tested systems: over the entire set of problems, nagging’s measured speedups exceed those of partitioning

(as measured by both µ and µ∗). If restricted to satisfiable formulae only, partitioning’s measured
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performance is similar to that of nagging. Recall that the Davis-Putnam/3SAT algorithm searches until it

encounters a satisficing solution, exhausting the search space only if the given formula is not satisfiable.

This early-termination behavior implies that either nagging or partitioning could just get lucky and

quickly encounter a solution, yielding large observed speedup values (this is consistent with the maximum

observed speedup values reported in the table). In contrast, the search on unsatisfiable formulae unfolds

in a manner more consistent with that of the other search algorithms, since one must exhaust the entire

search space before labeling a formula as unsatisfiable. On these problems, nagging’s performance clearly

dominates that of partitioning by all reported measures.

Of course, summary statistics such as the speedup values just shown obscure the relation between

speedup values and problem difficulty: observing a 200-fold performance improvement on a problem that

takes several hours to solve on one processor should be more meaningful than observing a similar

speedup on a problem that might be solved in just a few milliseconds. To provide a gestalt view of

speedup with respect to problem difficulty, we turn to a graphical representation of the data (see Figures 9

through 11): these plots show parallel solution time against serial solution time.14 Interpretation of this

kind of plot is relatively straightforward, as datapoints falling below the upper diagonal line are faster in

parallel (i.e., hav e speedup values larger than 1. 0), while datapoints falling above the upper diagonal line

are faster on one processor. The lower line represents a speedup value equal to the number of processors

in use; hence a datapoint falling below this line correspond to superlinear speedups.

Figure 9 shows results for the A*/TSP system. Since identical resource limits are imposed on all

serial and parallel trials, doubly-censored datapoints should fall on the diagonal line. Singly-censored

datapoints are best understood as datapoints that have been artificially shifted to the left of their true

14 Note that, for clarity, the data are plotted in log-log space, even if this transformation does tend to obscure
the relative performance differences on large and small problems: i.e., a 1 unit vertical (alternatively: horizontal) dif-
ference on the top half (alternatively: right side) of the plot represents a much larger time interval than an identical 1
unit vertical (alternatively: horizontal) difference on the bottom half (alternatively: left side) of the plot.
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Figure 9: Two-processor A*/TSP performance plot in log-log space. Datapoints falling below the upper diagonal
line are faster in parallel, while datapoints falling below the lower diagonal line are superlinearly faster in parallel.
Doubly-censored datapoints should fall on the diagonal line, while singly-censored datapoints appear artificially dis-
placed to the left of their true positions.

position, because their plotted serial solution times (ordinate) represent lower bounds on their true serial
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solution times. As is clear from the plot, nagging generally provides some speedup and occasionally

provides exceptional speedups, while partitioning is mostly constrained to the region between the two

diagonal lines. As expected, the few datapoints that are slower for either nagging or partitioning (i.e.,

those datapoints corresponding to those speedup values less than 1. 0 reported earlier) are relegated to the

left hand side of the plot, and represent small problems where the startup costs of parallel execution are

not effectively amortized over longer solution times. A similar trend is observed on more difficult (i.e.,

larger serial solution times) problems, where superlinear speedups are more likely to occur. Aside from

the amortization argument, a second factor may also be at work here: one would naturally expect a

concomitantly greater payoff by finding a good solution early within a larger search space.
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Partitioning (censored)
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Figure 10: Two-processor SPAM/Othello performance plot in log-log space. Datapoints falling below the upper di-
agonal line are faster in parallel, while datapoints falling below the lower diagonal line are superlinearly faster in
parallel.
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While the mechanism by which a nagging system attains superlinear speedup is clear, it is somewhat

less clear how a partitioning system can achieve this kind of performance. To understand how this can

happen, recall that the partitioning system implementation tested here differs from the coarse model of the

previous section with respect to the asynchronous load balancing policy adopted; as a consequence,

multiple partitioning events may occur in the course of solving a single problem. We might therefore

attribute those few occasions where partitioning attains superlinear speedups to situations where

exceptionally good bounds are found in early partitions, so that subsequent partitioning events can enjoy

the benefits in terms of additional pruning. A similar explanation accounts for the occasional superlinear

speedups reported by the SPAM/Othello partitioning system (see Figure 10). Note that, as for A*/TSP,

the SPAM/Othello partitioning system still seems less likely to attain superlinear speedups, especially on

larger problems, than does the nagging system, while the nagging system on occasion delivers large

speedups. Particularly noticeable is the lone censored problem, where because the serial solution time

plotted is a lower bound to the true serial solution time, the speedup attained by nagging is at least

148. 32, as compared with a lower bound speedup of only 22. 54 for partitioning. The results shown in

Figure 11 for the Davis-Putnam/3SAT solver show a similar pattern. Recall that both nagging and

partitioning can be expected to result in large speedups on satisfiable formulae, due to the algorithm’s

early-termination behavior. Thus many of the unsatisfiable problems’ datapoints lie well in the superlinear

speedup zone of the plot. Yet, once again, only nagging seems likely to result in superlinear speedups for

(unsatisfiable) problems of any meaningful size.

6.2. Experiment 2

Our analysis of the previous section relied on using strictly solution-equivalent transformation

functions. In this experiment, we explore the performance of window narrowing, a non solution-

equivalent problem transformation function, in SPAM. Recall that the main idea is that a nagger can

artificially restrict its α β window in order to gain execution speed at the expense of information: indeed,
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Figure 11: Two-processor Davis-Putnam/3SAT performance plot in log-log space. Datapoints falling below the up-
per diagonal line are faster in parallel, while datapoints falling below the lower diagonal line are superlinearly faster
in parallel.

window narrowing will prune more aggressively, but may not be as informed as solution-equivalent

transformations. Our protocol (somewhat arbitrarily) randomly narrows each nagpoint window, while

forcing processors corresponding to leaf nodes in the nagging hierarchy to use a unit window, thus

essentially performing zero-window search at leaf processors.

The experimental procedure is identical to that of Experiment 1, and the same 100 random Othello

problems are used. Note that since we are only using two processors, the nagging processor is always a

leaf processor, and is therefore always operating with unit window size. The results, plotted against serial

solution times, are shown in Figure 12 (note that the non-narrowing system data is identical to that shown

in Figure 10).
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Figure 12: Two-processor SPAM/Othello performance plot in log-log space, both with and without the use of the
window narrowing transformation. Datapoints falling below the upper diagonal line are faster in parallel, while dat-
apoints falling below the lower diagonal line are superlinearly faster in parallel.

In addition to graphical comparisons, we can also test, statistically, the null hypothesis ‘‘permutation

with window narrowing is no faster than permutation alone.’’ If we can reject this null hypothesis, then

we can conclude that window narrowing is beneficial. To test the hypothesis without making any

distributional assumptions, we’ll use a nonparametric statistic, the paired Wilcoxon signed-ranks test

[Wilcoxon45]; what such nonparametric statistics may sacrifice in terms of power is more than

counterbalanced by their broad applicability. Using 100 paired samples as the input, the paired sign test

easily rejects the null hypothesis using the traditional critical value for statistical significance (p < 0. 05).

Of course, statistics notwithstanding, Figure 12 clearly shows that both transformation functions are doing

the job; yet the results shown here do underline the critical importance of the nature of the transformation

function used.
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6.3. Experiment 3

While both nagging and partitioning are often capable of delivering effective — and, in the case of

nagging, often superlinear — speedups, exceptional speedups will not necessarily be the rule for every

problem. In this section, we shall examine a problem domain where both nagging and partitioning deliver

some speedup, but neither approach manages to produce exceptional results.

Consider the following team assignment problem, or TAP, drawn from the sports economics

literature:

Given a collection of N players and T teams, where the ith player has an associated quality val-
ue Qi , find an assignment of players to teams so that there are an equal number of players on
each team and the differences between relative team qualities, computed as a function of their
constituent player qualities, are minimized.

There are many variants of this problem, depending on the team quality metric used; some more complex

variants may involve higher order effects (e.g., individual player quality may be a function of teammate

qualities) [Whittinghill99]. For this experiment, however, we’ll choose a simple linear metric, so that we

are in effect minimizing the sum, over the set of all teams, of the absolute value of the difference between

team quality (the sum of player qualities) and the hypothetical average team quality (computed as the

product of team size and average player quality). Our goal is to find the best-matched team assignments

in terms of team quality; for this particular metric, a perfect solution produces T teams of exactly average

quality if such a solution exists. Our solution applies the same A* search algorithm described in Section

4.2 to the team assignment problem. Formulating an admissible heuristic function that properly bounds

the solution value for any partial assignment is not overly difficult; the function used here estimates the

potential deviation from the target team quality (i.e., the average player quality times the team size)

[Paarsch99].

The experiment follows the same protocol as Experiment 1 using 100 randomly generated matching
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Figure 13: Two-processor A*/TAP performance plot. Datapoints falling below the upper diagonal line are faster in
parallel, while datapoints falling below the lower diagonal line are superlinearly faster in parallel.

problems; the results are shown in Figure 13.15 The most striking feature of the plot in Figure 13 is the

extent to which the partitioning system tracks the linear speedup line: only on smaller problems, where

solution times are of the same order as the system clock resolution, is there any significant deviation from

this line. On the other hand, the performance of nagging is decidedly worse than that of partitioning,

rarely even attaining linear speedup.

It is tempting to attribute the poor performance of nagging to the use of an inadequate problem

transformation function, as permutation of the search space here clearly does not provide additional

pruning as for, say, TSP. Yet it is much more likely that the problem lies with the heuristic estimate: if it is

15 Random problems were once again generated so that serial solution times ranged between 0.01 seconds, the
resolution of the Linux system clock, up to about 5 minutes. The resulting problem set assigned between 15 and 32
players to 2, 3, or 4 teams.
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not informative (i.e., close to the true additional cost of the partial solution), then A* search cannot be

expected to explore fewer nodes than simple branch-and-bound. One cannot compensate for a poor

heuristic estimate with a better problem transformation function. Alternatively, the difficulty may lie with

the problem itself. If the cost landscape tends to be populated with many local minima whose values are

near that of the global minima, even a highly informative heuristic will not lead to much pruning. As

mentioned in Section 4.1, we must acknowledge that some NP-hard problems are harder than others.

Unlike 3SAT problems, however, it is possible that TAP problems are simply all uniformly difficult.

6.4. Experiment 4

In this experiment, we provide empirical support for the scalability of nagging, showing how

additional processors have a beneficial effect on the performance of the system, and provide direct

comparison with the behavior of partitioning. The experimental procedure is like that of Experiment 1,

except that we now use 8, 16, 32, or 64 essentially identical processors arranged in a hierarchy with

branching factor less than or equal to three.16 In this section, we will focus on results obtained with 64

processors.17

We turn first to some simple descriptive statistics. Recall that in Experiment 1 using only two

processors, there were 8 problems left unsolved by nagging, and 9 problems left unsolved by partitioning

(these correspond to the doubly-censored datapoints of Figure 9). When 64 processors are applied, the

nagging system solves all 100 problem optimally, while the partitioning system still leaves five unsolved

problems. So, at least qualitatively, the performance of nagging exceeds that of partitioning. We can also

use observed speedup values to help quantify this trend (see table; as before, doubly-censored datapoints

16 The actual hierarchy depends on the NICE resource management daemon, and is constantly changing in re-
sponse to local system load and availability.

17 For the record, in our tests, both nagging and partitioning scale smoothly from 2 to 64 processors.

44



Segre, Forman, Resta & Wildenberg April 3, 2002 Nagging

are excluded).

Nagging Speedup Partitioning Speedup
CPUs N min µ µ∗ max N min µ µ∗ max

2 92 0.86 2.43 1.51 69.73 91 0.55 1.80 1.68 5.23
64 100 0.96 12.29 4.95 256.22 95 0.38 4.49 3.90 10.21

Direct comparison of both µ and µ∗ confirms the advantage of nagging in this experiment; indeed, the

maximum observed speedup for nagging exceeds the maximum observed speedup for partitioning by

more than a factor of twenty. Moreover, the values given in the table are fully consistent with the

argument first advanced in Section 5.3, that is, that the probability of obtaining a superlinear speedup is

higher for nagging than for partitioning (here, the nagging system produces superlinear speedups on at

least three of 100 problems — and possibly more, given the amount of censoring observed — while

partitioning fails to produce any superlinear speedup at all).

One troubling fact is that the observed mean speedups µ and µ∗ are significantly less than N , the

number of processors employed. In our analytical model, the predicted µ∗ values — while still less than

N — were significantly more in line with N . We can attribute this discrepancy to two differences. First,

the model of Section 5 is a coarse model, where all processors engage in a single nagging episode on the

root node of the search, while the experimental model allows repeated nagging episodes applied at

internal nodes of the search process. Second, and more to the point, the analytical model had all N − 1

naggers reporting directly to the single master search process, while the experiment allowed no more than

three processors to nag the master directly (the remaining N − 4 processors were used to recursively nag

the naggers). That the NICE hierarchy limits each daemon to only three descendents is quite arbitrary;

while increasing the branching factor of the hierarchy raises the communication overhead incurred by the

master, one must balance the increased overhead on the performance benefits obtained. Note that the

tradeoff is complicated, since the optimal configuration may differ depending on the search algorithm or

ev en the problem instance. In any case, adaptive configuration of the NICE hierarchy is still an area we
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Figure 14: Sixty-four processor A*/TSP performance plots for nagging (top) and partitioning (bottom); compare
with two processor A*/TSP performance plots given in Figure 9. Datapoints falling below the upper diagonal line
are faster in parallel, while datapoints falling below the lower diagonal line are superlinearly faster in parallel.

are actively exploring.
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Figure 14 presents a graphical view of the same data, and can be compared directly with the plots of

Figure 9 to confirm the descriptive statistics outlined above: nagging indeed appears more effective than

partitioning in applying additional processors to reduce solution time. Not surprisingly, this observation

appears more striking on larger problems, where the cost of initializing additional processors is readily

amortized over longer solution times. We conjecture that this trend extends to still larger problems;

indeed, the fact that nagging solves all problems optimally while partitioning still leaves five unsolved

problems within the prespecified resource bound is consistent with this conjecture.

7. Conclusion

Nagging is a paradigm for parallel search in a heterogeneous distributed computing environment. It

is applicable to a broad range of different artificial intelligence search algorithms, and scales easily to a

large number of processors. We hav e shown, using an analytical performance model, how nagging is often

a superior approach to the more traditional partitioning strategy commonly employed to parallelize

search. We hav e also presented empirical results that confirm the predictions of our analytical model and

support our claims regarding both the performance and scalability of nagging across several different

domains and search algorithms.

We are currently working on a number of refinements to nagging. First, inspired by the empirical

and analytical results reported here, we have already experimented with randomly mixing nagging and

partitioning within the same search. The idea is that since nagging and partitioning appear to be

complementary, one should actively manage a mixture of approaches in order to more effectively guide

the use of computational resources. We are currently focusing on how to decide whether a new event

should be a nagging event or a partitioning event. Based on the analytic model of Section 5, it should be

possible to use statistical evidence obtained in the course of a problem solving episode to decide how best

to use an idle processor on a particular problem. This decision might well change over the course of the

search: for example, early events might be primarily nagging events and later events might be primarily
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partitioning events. The basic idea is to let information about this particular problem solving process

guide the best application of processor power over the course of the search process.

We are also working on extensions to the NICE infrastructure itself. We are experimenting with

better hierarchy-formation and restructuring algorithms in order to better apply the available

computational resources to a given problem. We are also looking at cryptographic certification techniques

for distributing new NICE-enabled applications to processors within the NICE hierarchy.

Much of this work is being performed in the context of an extraordinarily challenging computational

biology application. Over the last two years, we have been working on HOPS, an ab initio distributed

hybrid optimization protein structure prediction engine (see, e.g., [Forman01]). HOPS is large,

interdisciplinary, project involving faculty and students from biochemistry, computer science, operations

research and applied mathematics. It combines a distributed search (using both nagging and partitioning)

over a discrete space of protein conformations with traditional continuous optimization techniques (e.g.,

nonlinearly constraint nonlinear programming, interior point methods, etc.) to find the energetically most

favorable conformation of a specified protein according to an energy model of our own design. Given the

sheer size of these search problems, HOPS is a perfect example of the kind of application where

nagging’s distinguishing features — effectiveness, scalability, and fault tolerance — should shine.
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